том 178 страницы 382-395

Mapping landscape canopy nitrogen content from space using PRISMA data

Тип публикацииJournal Article
Дата публикации2021-08-01
scimago Q1
wos Q1
БС1
SJR3.480
CiteScore19.6
Impact factor12.2
ISSN09242716, 18728235
Computer Science Applications
Atomic and Molecular Physics, and Optics
Engineering (miscellaneous)
Computers in Earth Sciences
Краткое описание
Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced opportunities for the development of new-generation retrieval models of multiple vegetation traits. Among these, canopy nitrogen content (CNC) is one of the most promising variables given its importance for agricultural monitoring applications. This work presents the first hybrid CNC retrieval model for the operational delivery from spaceborne imaging spectroscopy data. To achieve this, physically-based models were combined with machine learning regression algorithms and active learning (AL). The key concepts involve: (1) coupling the radiative transfer models PROSPECT-PRO and SAIL for the generation of a wide range of vegetation states as training data, (2) using dimensionality reduction to deal with collinearity, (3) applying an AL technique in combination with Gaussian process regression (GPR) for fine-tuning the training dataset on in field collected data, and (4) adding non-vegetated spectra to enable the model to deal with spectral heterogeneity in the image. The final CNC model was successfully validated against field data achieving a low root mean square error (RMSE) of 3.4 g / m 2 and coefficient of determination ( R 2 ) of 0.7. The model was applied to a PRISMA image acquired over agricultural areas in the North of Munich, Germany. Mapping aboveground CNC yielded reliable estimates over the whole landscape and meaningful associated uncertainties. These promising results demonstrate the feasibility of routinely quantifying CNC from space, such as in an operational context as part of the future CHIME mission.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
Remote Sensing
20 публикаций, 18.35%
Remote Sensing of Environment
14 публикаций, 12.84%
ISPRS Journal of Photogrammetry and Remote Sensing
9 публикаций, 8.26%
International Journal of Applied Earth Observation and Geoinformation
7 публикаций, 6.42%
International Journal of Remote Sensing
6 публикаций, 5.5%
Computers and Electronics in Agriculture
5 публикаций, 4.59%
European Journal of Remote Sensing
4 публикации, 3.67%
Smart Agricultural Technology
4 публикации, 3.67%
Frontiers in Plant Science
3 публикации, 2.75%
Journal of Geophysical Research Biogeosciences
2 публикации, 1.83%
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
2 публикации, 1.83%
Frontiers in Environmental Science
2 публикации, 1.83%
Advances in Space Research
2 публикации, 1.83%
Field Crops Research
2 публикации, 1.83%
Land
1 публикация, 0.92%
Agricultural and Forest Meteorology
1 публикация, 0.92%
Science of the Total Environment
1 публикация, 0.92%
Potato Research
1 публикация, 0.92%
Biogeosciences
1 публикация, 0.92%
Mechanism and Machine Theory
1 публикация, 0.92%
Iranian Journal of Science
1 публикация, 0.92%
Environmental Reviews
1 публикация, 0.92%
Movement Ecology
1 публикация, 0.92%
New Phytologist
1 публикация, 0.92%
Ecological Indicators
1 публикация, 0.92%
Environmental Challenges
1 публикация, 0.92%
Plant Phenomics
1 публикация, 0.92%
Journal of the Indian Society of Remote Sensing
1 публикация, 0.92%
IEEE Transactions on Geoscience and Remote Sensing
1 публикация, 0.92%
5
10
15
20

Издатели

10
20
30
40
50
60
Elsevier
55 публикаций, 50.46%
MDPI
22 публикации, 20.18%
Taylor & Francis
10 публикаций, 9.17%
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 7.34%
Frontiers Media S.A.
5 публикаций, 4.59%
Springer Nature
4 публикации, 3.67%
American Geophysical Union
2 публикации, 1.83%
Copernicus
1 публикация, 0.92%
Canadian Science Publishing
1 публикация, 0.92%
Wiley
1 публикация, 0.92%
10
20
30
40
50
60
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
110
Поделиться
Цитировать
ГОСТ |
Цитировать
Verrelst J. et al. Mapping landscape canopy nitrogen content from space using PRISMA data // ISPRS Journal of Photogrammetry and Remote Sensing. 2021. Vol. 178. pp. 382-395.
ГОСТ со всеми авторами (до 50) Скопировать
Verrelst J., Rivera-Caicedo J. P., Reyes Muñoz P., Morata M., Amin E., Tagliabue G., Panigada C., Hank T. B., Berger K. Mapping landscape canopy nitrogen content from space using PRISMA data // ISPRS Journal of Photogrammetry and Remote Sensing. 2021. Vol. 178. pp. 382-395.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.isprsjprs.2021.06.017
UR - https://doi.org/10.1016/j.isprsjprs.2021.06.017
TI - Mapping landscape canopy nitrogen content from space using PRISMA data
T2 - ISPRS Journal of Photogrammetry and Remote Sensing
AU - Verrelst, Jochem
AU - Rivera-Caicedo, Juan Pablo
AU - Reyes Muñoz, Pablo
AU - Morata, Miguel
AU - Amin, Eatidal
AU - Tagliabue, Giulia
AU - Panigada, C.
AU - Hank, Tobias B.
AU - Berger, Katja
PY - 2021
DA - 2021/08/01
PB - Elsevier
SP - 382-395
VL - 178
PMID - 36203652
SN - 0924-2716
SN - 1872-8235
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Verrelst,
author = {Jochem Verrelst and Juan Pablo Rivera-Caicedo and Pablo Reyes Muñoz and Miguel Morata and Eatidal Amin and Giulia Tagliabue and C. Panigada and Tobias B. Hank and Katja Berger},
title = {Mapping landscape canopy nitrogen content from space using PRISMA data},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
year = {2021},
volume = {178},
publisher = {Elsevier},
month = {aug},
url = {https://doi.org/10.1016/j.isprsjprs.2021.06.017},
pages = {382--395},
doi = {10.1016/j.isprsjprs.2021.06.017}
}