Open Access
Open access
Journal of Biological Chemistry, volume 299, issue 9, pages 105087

Hyper-ubiquitylation of DNA helicase RECQL4 by E3 ligase MITOL prevents mitochondrial entry and potentiates mitophagy

Publication typeJournal Article
Publication date2023-09-01
scimago Q1
SJR1.766
CiteScore8.5
Impact factor4
ISSN00219258, 1083351X
Biochemistry
Molecular Biology
Cell Biology
Abstract
Mutations in the DNA helicase RECQL4 lead to Rothmund-Thomson Syndrome (RTS), a disorder characterized by mitochondrial dysfunctions, premature aging, and genomic instability. However, the mechanisms by which these mutations lead to pathology are unclear. Here we report that RECQL4 is ubiquitylated by a mitochondrial E3 ligase, MITOL, at two lysine residues (K1101, K1154) via K6 linkage. This ubiquitylation hampers the interaction of RECQL4 with mitochondrial importer Tom20, thereby restricting its own entry into mitochondria. We show the RECQL4 2K mutant (where both K1101 and K1154 are mutated) has increased entry into mitochondria and demonstrates enhanced mtDNA replication. We observed that the three tested RTS patient mutants were unable to enter the mitochondria and showed decreased mtDNA replication. Furthermore, we found that RECQL4 in RTS patient mutants are hyper-ubiquitylated by MITOL and form insoluble aggregate-like structures on the outer mitochondrial surface. However, depletion of MITOL allows RECQL4 expressed in these RTS mutants to enter mitochondria and rescue mtDNA replication. Finally, we show increased accumulation of hyper-ubiquitylated RECQL4 outside the mitochondria leads to the cells being potentiated to increased mitophagy. Hence, we conclude regulating the turnover of RECQL4 by MITOL may have a therapeutic effect in RTS patients.
Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?