том 97 издание 2 страницы 204-216

A note on the jumping constant conjecture of Erdős

Peter Frankl 1
Yuejian Peng 2
VOJTĚCH RÖDL 3
J. Talbot 4
Тип публикацииJournal Article
Дата публикации2007-03-01
scimago Q1
wos Q1
БС1
SJR2.312
CiteScore2.7
Impact factor1.2
ISSN00958956, 10960902
Computational Theory and Mathematics
Theoretical Computer Science
Discrete Mathematics and Combinatorics
Краткое описание
Let r ⩾ 2 be an integer. The real number α ∈ [ 0 , 1 ] is a jump for r if there exists c > 0 such that for every positive ϵ and every integer m ⩾ r , every r -uniform graph with n > n 0 ( ϵ , m ) vertices and at least ( α + ϵ ) ( n r ) edges contains a subgraph with m vertices and at least ( α + c ) ( m r ) edges. A result of Erdős, Stone and Simonovits implies that every α ∈ [ 0 , 1 ) is a jump for r = 2 . For r ⩾ 3 , Erdős asked whether the same is true and showed that every α ∈ [ 0 , r ! r r ) is a jump. Frankl and Rödl gave a negative answer by showing that 1 − 1 l r − 1 is not a jump for r if r ⩾ 3 and l > 2 r . Another well-known question of Erdős is whether r ! r r is a jump for r ⩾ 3 and what is the smallest non-jumping number. In this paper we prove that 5 2 r ! r r is not a jump for r ⩾ 3 . We also describe an infinite sequence of non-jumping numbers for r = 3 .
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Graphs and Combinatorics
3 публикации, 15%
SIAM Journal on Discrete Mathematics
2 публикации, 10%
Journal of Combinatorial Theory. Series B
2 публикации, 10%
Discrete Mathematics
2 публикации, 10%
Journal of Scientific Computing
1 публикация, 5%
Israel Journal of Mathematics
1 публикация, 5%
Journal of Combinatorial Optimization
1 публикация, 5%
Journal of Combinatorial Theory - Series A
1 публикация, 5%
Discrete Applied Mathematics
1 публикация, 5%
Applied Mathematics and Computation
1 публикация, 5%
Combinatorics Probability and Computing
1 публикация, 5%
Science China Mathematics
1 публикация, 5%
International Mathematics Research Notices
1 публикация, 5%
Forum of Mathematics, Sigma
1 публикация, 5%
Electronic Journal of Combinatorics
1 публикация, 5%
1
2
3

Издатели

1
2
3
4
5
6
7
Springer Nature
7 публикаций, 35%
Elsevier
7 публикаций, 35%
Society for Industrial and Applied Mathematics (SIAM)
2 публикации, 10%
Cambridge University Press
2 публикации, 10%
Oxford University Press
1 публикация, 5%
Electronic Journal of Combinatorics
1 публикация, 5%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
Frankl P. et al. A note on the jumping constant conjecture of Erdős // Journal of Combinatorial Theory. Series B. 2007. Vol. 97. No. 2. pp. 204-216.
ГОСТ со всеми авторами (до 50) Скопировать
Frankl P., Peng Y., RÖDL V., Talbot J. A note on the jumping constant conjecture of Erdős // Journal of Combinatorial Theory. Series B. 2007. Vol. 97. No. 2. pp. 204-216.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.jctb.2006.05.004
UR - https://doi.org/10.1016/j.jctb.2006.05.004
TI - A note on the jumping constant conjecture of Erdős
T2 - Journal of Combinatorial Theory. Series B
AU - Frankl, Peter
AU - Peng, Yuejian
AU - RÖDL, VOJTĚCH
AU - Talbot, J.
PY - 2007
DA - 2007/03/01
PB - Elsevier
SP - 204-216
IS - 2
VL - 97
SN - 0095-8956
SN - 1096-0902
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2007_Frankl,
author = {Peter Frankl and Yuejian Peng and VOJTĚCH RÖDL and J. Talbot},
title = {A note on the jumping constant conjecture of Erdős},
journal = {Journal of Combinatorial Theory. Series B},
year = {2007},
volume = {97},
publisher = {Elsevier},
month = {mar},
url = {https://doi.org/10.1016/j.jctb.2006.05.004},
number = {2},
pages = {204--216},
doi = {10.1016/j.jctb.2006.05.004}
}
MLA
Цитировать
Frankl, Peter, et al. “A note on the jumping constant conjecture of Erdős.” Journal of Combinatorial Theory. Series B, vol. 97, no. 2, Mar. 2007, pp. 204-216. https://doi.org/10.1016/j.jctb.2006.05.004.