volume 51 issue 1 pages 75-86

Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus

Bo-xun Zhang 1
Xuan Zhang 2, 3
Zhen Luo 4
Ji-Xiang Ren 5
Xiaotong Yu 6
Hongbo Zhao 7
Yitian Wang 8
Wenhui Zhang 2, 9
Wenjing Tian 7
Xiuxiu Wei 10
Qi You Ding 1
Haoyu Yang 1
Zishan Jin 1, 10
Xiaolin Tong 1, 11
Jun Wang 2, 9
Linhua Zhao 1
1
 
Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
3
 
Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, Inner Mongolia 014030, China
4
 
Infinitus (China) Company Ltd, Guangzhou, Guangdong 510405, China
5
 
Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
6
 
Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
7
 
Xinjiekou Community Health Service Center in Xicheng District, Beijing 100035, China
8
 
Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
11
 
Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
Publication typeJournal Article
Publication date2024-01-01
scimago Q1
wos Q1
SJR1.882
CiteScore9.9
Impact factor7.1
ISSN16738527, 18735533
Molecular Biology
Genetics
Abstract
Gut microbiota and circulating metabolite dysbiosis predate important pathological changes in glucose metabolic disorders; however, comprehensive studies on impaired glucose tolerance (IGT), a diabetes mellitus (DM) precursor, are lacking. Here, we perform metagenomic sequencing and metabolomics on 47 pairs of individuals with IGT and newly diagnosed DM and 46 controls with normal glucose tolerance (NGT); patients with IGT are followed up after 4 years for progression to DM. Analysis of baseline data reveals significant differences in gut microbiota and serum metabolites among the IGT, DM, and NGT groups. In addition, 13 types of gut microbiota and 17 types of circulating metabolites showed significant differences at baseline before IGT progressed to DM, including higher levels of Eggerthella unclassified, Coprobacillus unclassified, Clostridium ramosum, L-valine, L-norleucine, and L-isoleucine, and lower levels of Eubacterium eligens, Bacteroides faecis, Lachnospiraceae bacterium 3_1_46FAA, Alistipes senegalensis, Megaspaera elsdenii, Clostridium perfringens, α-linolenic acid, 10E,12Z-octadecadienoic acid, and dodecanoic acid. A random forest model based on differential intestinal microbiota and circulating metabolites can predict the progression from IGT to DM (AUC = 0.87). These results suggest that microbiome and metabolome dysbiosis occur in individuals with IGT and have important predictive values and potential for intervention in preventing IGT from progressing to DM.
Found 
Found 

Top-30

Journals

1
2
International Journal of Biological Macromolecules
2 publications, 28.57%
Diabetes Research and Clinical Practice
1 publication, 14.29%
mSystems
1 publication, 14.29%
Pediatrician (St Petersburg)
1 publication, 14.29%
Frontiers in Endocrinology
1 publication, 14.29%
Frontiers in Cellular and Infection Microbiology
1 publication, 14.29%
1
2

Publishers

1
2
3
Elsevier
3 publications, 42.86%
Frontiers Media S.A.
2 publications, 28.57%
American Society for Microbiology
1 publication, 14.29%
Eco-Vector LLC
1 publication, 14.29%
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
7
Share
Cite this
GOST |
Cite this
GOST Copy
Zhang B. et al. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus // Journal of Genetics and Genomics. 2024. Vol. 51. No. 1. pp. 75-86.
GOST all authors (up to 50) Copy
Zhang B., Zhang X., Luo Z., Ren J., Yu X., Zhao H., Wang Y., Zhang W., Tian W., Wei X., Ding Q. Y., Yang H., Jin Z., Tong X., Wang J., Zhao L. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus // Journal of Genetics and Genomics. 2024. Vol. 51. No. 1. pp. 75-86.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.jgg.2023.08.005
UR - https://doi.org/10.1016/j.jgg.2023.08.005
TI - Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus
T2 - Journal of Genetics and Genomics
AU - Zhang, Bo-xun
AU - Zhang, Xuan
AU - Luo, Zhen
AU - Ren, Ji-Xiang
AU - Yu, Xiaotong
AU - Zhao, Hongbo
AU - Wang, Yitian
AU - Zhang, Wenhui
AU - Tian, Wenjing
AU - Wei, Xiuxiu
AU - Ding, Qi You
AU - Yang, Haoyu
AU - Jin, Zishan
AU - Tong, Xiaolin
AU - Wang, Jun
AU - Zhao, Linhua
PY - 2024
DA - 2024/01/01
PB - Elsevier
SP - 75-86
IS - 1
VL - 51
PMID - 37652264
SN - 1673-8527
SN - 1873-5533
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Zhang,
author = {Bo-xun Zhang and Xuan Zhang and Zhen Luo and Ji-Xiang Ren and Xiaotong Yu and Hongbo Zhao and Yitian Wang and Wenhui Zhang and Wenjing Tian and Xiuxiu Wei and Qi You Ding and Haoyu Yang and Zishan Jin and Xiaolin Tong and Jun Wang and Linhua Zhao},
title = {Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus},
journal = {Journal of Genetics and Genomics},
year = {2024},
volume = {51},
publisher = {Elsevier},
month = {jan},
url = {https://doi.org/10.1016/j.jgg.2023.08.005},
number = {1},
pages = {75--86},
doi = {10.1016/j.jgg.2023.08.005}
}
MLA
Cite this
MLA Copy
Zhang, Bo-xun, et al. “Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus.” Journal of Genetics and Genomics, vol. 51, no. 1, Jan. 2024, pp. 75-86. https://doi.org/10.1016/j.jgg.2023.08.005.