Open Access
Open access
том 34 издание 5 страницы 1718-1729

A three-tier road condition classification system using a spiking neural network model

Moses Apambila Agebure 1
Elkanah Olaosebikan Oyetunji 2
Edward Yellakuor Baagyere 1
1
 
Department of Computer Science, Faculty of Mathematical Sciences, CK Tedam University of Technology and Applied Sciences, Navrongo, Ghana
Тип публикацииJournal Article
Дата публикации2022-05-01
scimago Q1
wos Q1
БС1
SJR1.357
CiteScore15.8
Impact factor6.1
ISSN13191578, 22131248
General Computer Science
Краткое описание
Road surface anomaly detection and classification based on crowd-sourced smart phone sensor data has become an important area of research over the last decade due to its potential benefits to road maintenance. Previous studies focused on paved roads in which anomaly classification were modelled as single-staged events mostly using machine learning and threshold-based methods. Little or no attention has been paid to road type classification and anomaly detection and classification on unpaved roads, which constitute a larger percentage of roads in the developing world. In this paper, road condition classification is approached as a multi-tier activity, comprising of models for road type classification, anomaly classification models for paved roads as well as unpaved roads using a novel Spiking Neural Network (SNN) learning model. To demonstrate the viability of the proposed system, road condition data for the various tasks were collected via an Android Application developed by the authors from which statistical features were extracted and used to train and evaluate the models. Experimental results showed that the proposed SNN model yielded significantly higher classification performance when compared to a Support Vector Machine (SVM) and Multilayer Perceptron (MLP) trained and tested using the collected datasets and classification models reported in existing studies.
Найдено 
Найдено 

Топ-30

Журналы

1
Buildings
1 публикация, 12.5%
Applied Sciences (Switzerland)
1 публикация, 12.5%
IEEE Access
1 публикация, 12.5%
IEEE Sensors Journal
1 публикация, 12.5%
Journal of King Saud University - Computer and Information Sciences
1 публикация, 12.5%
Sensors
1 публикация, 12.5%
Engineering Applications of Artificial Intelligence
1 публикация, 12.5%
Expert Systems
1 публикация, 12.5%
1

Издатели

1
2
3
MDPI
3 публикации, 37.5%
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 25%
King Saud University
1 публикация, 12.5%
Elsevier
1 публикация, 12.5%
Wiley
1 публикация, 12.5%
1
2
3
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
8
Поделиться
Цитировать
ГОСТ |
Цитировать
Agebure M. A., Oyetunji E. O., Baagyere E. Y. A three-tier road condition classification system using a spiking neural network model // Journal of King Saud University - Computer and Information Sciences. 2022. Vol. 34. No. 5. pp. 1718-1729.
ГОСТ со всеми авторами (до 50) Скопировать
Agebure M. A., Oyetunji E. O., Baagyere E. Y. A three-tier road condition classification system using a spiking neural network model // Journal of King Saud University - Computer and Information Sciences. 2022. Vol. 34. No. 5. pp. 1718-1729.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.jksuci.2020.08.012
UR - https://doi.org/10.1016/j.jksuci.2020.08.012
TI - A three-tier road condition classification system using a spiking neural network model
T2 - Journal of King Saud University - Computer and Information Sciences
AU - Agebure, Moses Apambila
AU - Oyetunji, Elkanah Olaosebikan
AU - Baagyere, Edward Yellakuor
PY - 2022
DA - 2022/05/01
PB - King Saud University
SP - 1718-1729
IS - 5
VL - 34
SN - 1319-1578
SN - 2213-1248
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Agebure,
author = {Moses Apambila Agebure and Elkanah Olaosebikan Oyetunji and Edward Yellakuor Baagyere},
title = {A three-tier road condition classification system using a spiking neural network model},
journal = {Journal of King Saud University - Computer and Information Sciences},
year = {2022},
volume = {34},
publisher = {King Saud University},
month = {may},
url = {https://doi.org/10.1016/j.jksuci.2020.08.012},
number = {5},
pages = {1718--1729},
doi = {10.1016/j.jksuci.2020.08.012}
}
MLA
Цитировать
Agebure, Moses Apambila, et al. “A three-tier road condition classification system using a spiking neural network model.” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 5, May. 2022, pp. 1718-1729. https://doi.org/10.1016/j.jksuci.2020.08.012.