том 242 страницы 104222

Large-scale web tracking and cookie compliance: Evaluating one million websites under GDPR with AI categorization

Тип публикацииJournal Article
Дата публикации2025-10-01
scimago Q1
wos Q1
БС1
SJR1.972
CiteScore20.3
Impact factor8.0
ISSN10848045, 10958592
Краткое описание
With the increasing prevalence of web-tracking technologies, including tracking cookies, pixel tracking, and browser fingerprinting techniques, there is a pressing need to analyze their impact on user privacy. Despite the growing interest in the scholarly literature, large-scale, fully automatic evaluations of website compliance with privacy regulations remain scarce. In this paper, we present new algorithms, methods, and an AI categorization model designed for massive, fully automatic analyses of web-tracking and cookie compliance and usage with and without valid user consent. Utilizing the recently published Website Evidence Collector (WEC) software from the European Data Protection Supervisor (EDPS), these algorithms are applied to assess over one million websites from Tranco’s top list under European GDPR regulation. A novel 22-category multilabel AI model for website categorization provides content-based context to compliance results, achieving 96.56% accuracy and an F1 score of 0.963. Results reveal that nearly half of the websites utilize tracking cookies, while over half employ pixel tracking without user consent, thus highlighting significant differences between websites’ content categories. Additionally, our analysis demonstrates how web-tracking power is concentrated among just a few companies, with the top 10 tracking firms being responsible for most compliance violations related to obtaining valid user consent. This paper serves as a foundation for ongoing large-scale web-tracking analyses, essential for understanding trends over time and evaluating the effectiveness of privacy regulations.
Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Поделиться
Цитировать
ГОСТ |
Цитировать
Martínez D. et al. Large-scale web tracking and cookie compliance: Evaluating one million websites under GDPR with AI categorization // Journal of Network and Computer Applications. 2025. Vol. 242. p. 104222.
ГОСТ со всеми авторами (до 50) Скопировать
Martínez D., Molero A., Calle E., Ametller D. C., Jové A. Large-scale web tracking and cookie compliance: Evaluating one million websites under GDPR with AI categorization // Journal of Network and Computer Applications. 2025. Vol. 242. p. 104222.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.jnca.2025.104222
UR - https://linkinghub.elsevier.com/retrieve/pii/S1084804525001195
TI - Large-scale web tracking and cookie compliance: Evaluating one million websites under GDPR with AI categorization
T2 - Journal of Network and Computer Applications
AU - Martínez, David
AU - Molero, Aniol
AU - Calle, Eusebi
AU - Ametller, Dolors Canals
AU - Jové, Albert
PY - 2025
DA - 2025/10/01
PB - Elsevier
SP - 104222
VL - 242
SN - 1084-8045
SN - 1095-8592
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Martínez,
author = {David Martínez and Aniol Molero and Eusebi Calle and Dolors Canals Ametller and Albert Jové},
title = {Large-scale web tracking and cookie compliance: Evaluating one million websites under GDPR with AI categorization},
journal = {Journal of Network and Computer Applications},
year = {2025},
volume = {242},
publisher = {Elsevier},
month = {oct},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1084804525001195},
pages = {104222},
doi = {10.1016/j.jnca.2025.104222}
}