том 459 страницы 228069

State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network

Penghua Li 1
Yu-Xuan Wu 1
Qingyu Xiong 2
Baocang Ding 3
Jie Hou 1
Dechao Luo 4
Yujun Rong 5
Shuaiyong Li 1
Тип публикацииJournal Article
Дата публикации2020-05-01
scimago Q1
wos Q1
БС1
SJR1.784
CiteScore14.9
Impact factor7.9
ISSN03787753, 18732755
Physical and Theoretical Chemistry
Electrical and Electronic Engineering
Energy Engineering and Power Technology
Renewable Energy, Sustainability and the Environment
Краткое описание
To improve state-of-health (SOH) estimation and remaining useful life (RUL) prediction, a prognostic framework shared by multiple batteries is proposed. A variant long-short-term memory (LSTM) neural network (NN), called AST-LSTM NN, is designed to guarantee the performance of proposed framework. Firstly, the input and forget gates are coupled by a fixed connection, which leads simultaneous determination of old information and new data. Secondly, the element-wise product of the new inputs and the historical cell states is conducted for screening out more beneficial information. Thirdly, a peephole connection from the “constant error carousel” (CEC) is added into the output gate to shield the unwanted error signals. AST-LSTM NNs, with mapping structures of many-to-one and one-to-one, are well-trained separately for the prediction of SOH and RUL. Compared with other data-driven methods, the experiments carried on NASA dataset demonstrate our method hits lower average root mean square, 0.0216, and conjunct error, 0.0831, for SOH and RUL, respectively.
Найдено 
Найдено 

Топ-30

Журналы

10
20
30
40
50
60
Journal of Energy Storage
53 публикации, 13.77%
Energy
24 публикации, 6.23%
Journal of Power Sources
18 публикаций, 4.68%
Energies
16 публикаций, 4.16%
Applied Energy
9 публикаций, 2.34%
IEEE Transactions on Transportation Electrification
9 публикаций, 2.34%
International Journal of Energy Research
8 публикаций, 2.08%
Renewable and Sustainable Energy Reviews
7 публикаций, 1.82%
Batteries
6 публикаций, 1.56%
IEEE Access
6 публикаций, 1.56%
IEEE Transactions on Instrumentation and Measurement
6 публикаций, 1.56%
Reliability Engineering and System Safety
5 публикаций, 1.3%
Measurement: Journal of the International Measurement Confederation
5 публикаций, 1.3%
Energy Reports
5 публикаций, 1.3%
IEEE Transactions on Industrial Electronics
5 публикаций, 1.3%
IEEE Transactions on Power Electronics
5 публикаций, 1.3%
Expert Systems with Applications
5 публикаций, 1.3%
Journal of Electrochemical Energy Conversion and Storage
4 публикации, 1.04%
Transactions of the Institute of Measurement and Control
4 публикации, 1.04%
Applied Sciences (Switzerland)
4 публикации, 1.04%
Scientific Reports
4 публикации, 1.04%
Ionics
4 публикации, 1.04%
International Journal of Electrochemical Science
4 публикации, 1.04%
Electronics (Switzerland)
3 публикации, 0.78%
Sustainability
3 публикации, 0.78%
iScience
3 публикации, 0.78%
Green Energy and Intelligent Transportation
3 публикации, 0.78%
Electrochimica Acta
3 публикации, 0.78%
IEEE Transactions on Energy Conversion
3 публикации, 0.78%
10
20
30
40
50
60

Издатели

20
40
60
80
100
120
140
160
180
Elsevier
175 публикаций, 45.45%
Institute of Electrical and Electronics Engineers (IEEE)
94 публикации, 24.42%
MDPI
43 публикации, 11.17%
Springer Nature
23 публикации, 5.97%
Wiley
13 публикаций, 3.38%
SAGE
6 публикаций, 1.56%
ASME International
5 публикаций, 1.3%
IOP Publishing
4 публикации, 1.04%
Frontiers Media S.A.
3 публикации, 0.78%
Royal Society of Chemistry (RSC)
3 публикации, 0.78%
The Electrochemical Society
3 публикации, 0.78%
Institution of Engineering and Technology (IET)
2 публикации, 0.52%
Hindawi Limited
2 публикации, 0.52%
EDP Sciences
1 публикация, 0.26%
Korean Institute of Power Electronics
1 публикация, 0.26%
Instrument Society of America
1 публикация, 0.26%
American Institute of Mathematical Sciences (AIMS)
1 публикация, 0.26%
Walter de Gruyter
1 публикация, 0.26%
Optica Publishing Group
1 публикация, 0.26%
Association for Computing Machinery (ACM)
1 публикация, 0.26%
Oxford University Press
1 публикация, 0.26%
Institute of Electrical Engineers of Japan (IEE Japan)
1 публикация, 0.26%
20
40
60
80
100
120
140
160
180
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
385
Поделиться
Цитировать
ГОСТ |
Цитировать
Li P. et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network // Journal of Power Sources. 2020. Vol. 459. p. 228069.
ГОСТ со всеми авторами (до 50) Скопировать
Li P., Wu Y., Xiong Q., Ding B., Hou J., Luo D., Rong Y., Li S. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network // Journal of Power Sources. 2020. Vol. 459. p. 228069.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.jpowsour.2020.228069
UR - https://doi.org/10.1016/j.jpowsour.2020.228069
TI - State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
T2 - Journal of Power Sources
AU - Li, Penghua
AU - Wu, Yu-Xuan
AU - Xiong, Qingyu
AU - Ding, Baocang
AU - Hou, Jie
AU - Luo, Dechao
AU - Rong, Yujun
AU - Li, Shuaiyong
PY - 2020
DA - 2020/05/01
PB - Elsevier
SP - 228069
VL - 459
SN - 0378-7753
SN - 1873-2755
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Li,
author = {Penghua Li and Yu-Xuan Wu and Qingyu Xiong and Baocang Ding and Jie Hou and Dechao Luo and Yujun Rong and Shuaiyong Li},
title = {State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network},
journal = {Journal of Power Sources},
year = {2020},
volume = {459},
publisher = {Elsevier},
month = {may},
url = {https://doi.org/10.1016/j.jpowsour.2020.228069},
pages = {228069},
doi = {10.1016/j.jpowsour.2020.228069}
}