том 469 страницы 228375

State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks

Тип публикацииJournal Article
Дата публикации2020-09-01
scimago Q1
wos Q1
БС1
SJR1.784
CiteScore14.9
Impact factor7.9
ISSN03787753, 18732755
Physical and Theoretical Chemistry
Electrical and Electronic Engineering
Energy Engineering and Power Technology
Renewable Energy, Sustainability and the Environment
Краткое описание
The state of charge (SOC) of a battery indicates its useable capacity. In the case of lithium-ion batteries, an accurate estimate improves their performance. With the recent tendency in the increased use of lithium-ion batteries in electric vehicles, the estimation of SOC has become even a more critical issue than before. In this paper, the combination of an Autoencoder neural network and a Long Short-Term Memory (LSTM) neural network is proposed for the estimation of the SOC of a battery with high precision. The Dynamic Stress Test (DST) drive cycle and the Federal Urban Driving Schedule (FUDS) drive cycle datasets are used to test the proposed algorithm at three different temperatures. To reveal the performance of the proposed method, the results are compared with several other methods from the literature. It is observed that the SOC estimation by the proposed method yields to a significantly better accuracy at all three temperatures.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
30
35
40
Journal of Energy Storage
37 публикаций, 24.83%
Energy
17 публикаций, 11.41%
Energies
6 публикаций, 4.03%
Applied Energy
6 публикаций, 4.03%
Batteries
5 публикаций, 3.36%
Journal of Power Sources
4 публикации, 2.68%
Energy Reports
4 публикации, 2.68%
Journal of Electrochemical Energy Conversion and Storage
4 публикации, 2.68%
Ionics
3 публикации, 2.01%
International Journal of Energy Research
3 публикации, 2.01%
IEEE Transactions on Instrumentation and Measurement
3 публикации, 2.01%
Electronics (Switzerland)
2 публикации, 1.34%
Applied Sciences (Switzerland)
2 публикации, 1.34%
Renewable and Sustainable Energy Reviews
2 публикации, 1.34%
Modeling Earth Systems and Environment
1 публикация, 0.67%
Korean Journal of Chemical Engineering
1 публикация, 0.67%
IET Energy Systems Integration
1 публикация, 0.67%
IET Electrical Systems in Transportation
1 публикация, 0.67%
Journal of the Electrochemical Society
1 публикация, 0.67%
Sustainability
1 публикация, 0.67%
Scientific Reports
1 публикация, 0.67%
Journal of Cleaner Production
1 публикация, 0.67%
Journal of Energy Chemistry
1 публикация, 0.67%
Electrochimica Acta
1 публикация, 0.67%
Applied Soft Computing Journal
1 публикация, 0.67%
IEEE Transactions on Industrial Electronics
1 публикация, 0.67%
IEEE Transactions on Industrial Informatics
1 публикация, 0.67%
Journal of Nanomaterials
1 публикация, 0.67%
IEEE Sensors Journal
1 публикация, 0.67%
5
10
15
20
25
30
35
40

Издатели

10
20
30
40
50
60
70
80
90
Elsevier
82 публикации, 55.03%
Institute of Electrical and Electronics Engineers (IEEE)
23 публикации, 15.44%
MDPI
19 публикаций, 12.75%
Springer Nature
9 публикаций, 6.04%
Wiley
5 публикаций, 3.36%
ASME International
4 публикации, 2.68%
Institution of Engineering and Technology (IET)
3 публикации, 2.01%
The Electrochemical Society
1 публикация, 0.67%
Hindawi Limited
1 публикация, 0.67%
Association for Computing Machinery (ACM)
1 публикация, 0.67%
Royal Society of Chemistry (RSC)
1 публикация, 0.67%
10
20
30
40
50
60
70
80
90
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
149
Поделиться
Цитировать
ГОСТ |
Цитировать
Fasahat M., Manthouri M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks // Journal of Power Sources. 2020. Vol. 469. p. 228375.
ГОСТ со всеми авторами (до 50) Скопировать
Fasahat M., Manthouri M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks // Journal of Power Sources. 2020. Vol. 469. p. 228375.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.jpowsour.2020.228375
UR - https://doi.org/10.1016/j.jpowsour.2020.228375
TI - State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks
T2 - Journal of Power Sources
AU - Fasahat, Mohammad
AU - Manthouri, Mohammad
PY - 2020
DA - 2020/09/01
PB - Elsevier
SP - 228375
VL - 469
SN - 0378-7753
SN - 1873-2755
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Fasahat,
author = {Mohammad Fasahat and Mohammad Manthouri},
title = {State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks},
journal = {Journal of Power Sources},
year = {2020},
volume = {469},
publisher = {Elsevier},
month = {sep},
url = {https://doi.org/10.1016/j.jpowsour.2020.228375},
pages = {228375},
doi = {10.1016/j.jpowsour.2020.228375}
}