volume 92 pages 243-268

On the complexity of the Lickteig–Roy subresultant algorithm

Grégoire Lecerf 1
1
 
CNRS (LIX, UMR 7161), Laboratoire d'informatique de l'École polytechnique, Campus de l'École polytechnique, 1, rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, CS35003, 91120 Palaiseau, France
Publication typeJournal Article
Publication date2019-05-01
scimago Q2
wos Q2
SJR0.533
CiteScore2.2
Impact factor1.1
ISSN07477171, 1095855X
Computational Mathematics
Algebra and Number Theory
Abstract
In their 1996 article, Lickteig and Roy introduced a fast “divide and conquer” variant of the subresultant algorithm which avoids coefficient growth in defective cases. The present article concerns the complexity analysis of their algorithm over effective rings endowed with the partially defined division routine. We achieve essentially the same kind of complexity bound as over effective fields. As a consequence we obtain new convenient complexity bounds for gcds, especially when coefficients are in abstract polynomial rings where evaluation/interpolation schemes are not supposed to be available.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
Journal of Complexity
6 publications, 40%
Journal of Symbolic Computation
2 publications, 13.33%
ACM Communications in Computer Algebra
1 publication, 6.67%
Applicable Algebra in Engineering, Communications and Computing
1 publication, 6.67%
Foundations of Computational Mathematics
1 publication, 6.67%
Linear Algebra and Its Applications
1 publication, 6.67%
Lecture Notes in Computer Science
1 publication, 6.67%
1
2
3
4
5
6

Publishers

1
2
3
4
5
6
7
8
9
Elsevier
9 publications, 60%
Association for Computing Machinery (ACM)
3 publications, 20%
Springer Nature
3 publications, 20%
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
15
Share
Cite this
GOST |
Cite this
GOST Copy
Lecerf G. On the complexity of the Lickteig–Roy subresultant algorithm // Journal of Symbolic Computation. 2019. Vol. 92. pp. 243-268.
GOST all authors (up to 50) Copy
Lecerf G. On the complexity of the Lickteig–Roy subresultant algorithm // Journal of Symbolic Computation. 2019. Vol. 92. pp. 243-268.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.jsc.2018.04.017
UR - https://doi.org/10.1016/j.jsc.2018.04.017
TI - On the complexity of the Lickteig–Roy subresultant algorithm
T2 - Journal of Symbolic Computation
AU - Lecerf, Grégoire
PY - 2019
DA - 2019/05/01
PB - Elsevier
SP - 243-268
VL - 92
SN - 0747-7171
SN - 1095-855X
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Lecerf,
author = {Grégoire Lecerf},
title = {On the complexity of the Lickteig–Roy subresultant algorithm},
journal = {Journal of Symbolic Computation},
year = {2019},
volume = {92},
publisher = {Elsevier},
month = {may},
url = {https://doi.org/10.1016/j.jsc.2018.04.017},
pages = {243--268},
doi = {10.1016/j.jsc.2018.04.017}
}