Principal characteristic networks for few-shot learning
Тип публикации: Journal Article
Дата публикации: 2019-02-10
scimago Q1
wos Q2
БС1
SJR: 0.593
CiteScore: 6.0
Impact factor: 3.1
ISSN: 10473203, 10959076
Electrical and Electronic Engineering
Signal Processing
Computer Vision and Pattern Recognition
Media Technology
Краткое описание
Few-shot learning aims to build a classifier that recognizes unseen new classes given only a few samples of them. Previous studies like prototypical networks utilized the mean of embedded support vectors to represent the prototype that is the representation of class and yield satisfactory results. However, the importance of these different embedded support vectors is not studied yet, which are valuable factors that could be used to push the limit of the few-shot learning. We propose a principal characteristic network that exploits the principal characteristic to better express prototype, computed by distributing weights based on embedded vectors’ different importance. The high-level abstract embedded vectors are extracted from our eResNet embedding network. In addition, we proposed a mixture loss function, which enlarges the inter-class distance in the embedding space for accurate classification. Extensive experimental results demonstrate that our network achieves state-of-the-art results on the Omniglot, miniImageNet and Cifar100 datasets.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Journal of Visual Communication and Image Representation
2 публикации, 9.09%
|
|
|
SHS Web of Conferences
1 публикация, 4.55%
|
|
|
Computers, Materials and Continua
1 публикация, 4.55%
|
|
|
Electronics (Switzerland)
1 публикация, 4.55%
|
|
|
Applied Intelligence
1 публикация, 4.55%
|
|
|
Pattern Recognition
1 публикация, 4.55%
|
|
|
Neural Networks
1 публикация, 4.55%
|
|
|
Symmetry
1 публикация, 4.55%
|
|
|
Science China Technological Sciences
1 публикация, 4.55%
|
|
|
IEEE Internet of Things Journal
1 публикация, 4.55%
|
|
|
IEEE Access
1 публикация, 4.55%
|
|
|
Lecture Notes in Computer Science
1 публикация, 4.55%
|
|
|
IEEE Transactions on Geoscience and Remote Sensing
1 публикация, 4.55%
|
|
|
Entropy
1 публикация, 4.55%
|
|
|
Visual Computer
1 публикация, 4.55%
|
|
|
Social Network Analysis and Mining
1 публикация, 4.55%
|
|
|
International Journal of Medical Informatics
1 публикация, 4.55%
|
|
|
1
2
|
Издатели
|
1
2
3
4
5
6
7
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
7 публикаций, 31.82%
|
|
|
Springer Nature
5 публикаций, 22.73%
|
|
|
Elsevier
5 публикаций, 22.73%
|
|
|
MDPI
3 публикации, 13.64%
|
|
|
EDP Sciences
1 публикация, 4.55%
|
|
|
Tech Science Press
1 публикация, 4.55%
|
|
|
1
2
3
4
5
6
7
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
22
Всего цитирований:
22
Цитирований c 2024:
4
(18.18%)
Самый цитирующий журнал
Цитирований в журнале:
2
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Zheng Y. et al. Principal characteristic networks for few-shot learning // Journal of Visual Communication and Image Representation. 2019. Vol. 59. pp. 563-573.
ГОСТ со всеми авторами (до 50)
Скопировать
Zheng Y., Wang R., Yang J., Xue L., Hu M. Principal characteristic networks for few-shot learning // Journal of Visual Communication and Image Representation. 2019. Vol. 59. pp. 563-573.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.jvcir.2019.02.006
UR - https://doi.org/10.1016/j.jvcir.2019.02.006
TI - Principal characteristic networks for few-shot learning
T2 - Journal of Visual Communication and Image Representation
AU - Zheng, Yan
AU - Wang, Ronggui
AU - Yang, Juan
AU - Xue, Lixia
AU - Hu, Min
PY - 2019
DA - 2019/02/10
PB - Elsevier
SP - 563-573
VL - 59
SN - 1047-3203
SN - 1095-9076
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Zheng,
author = {Yan Zheng and Ronggui Wang and Juan Yang and Lixia Xue and Min Hu},
title = {Principal characteristic networks for few-shot learning},
journal = {Journal of Visual Communication and Image Representation},
year = {2019},
volume = {59},
publisher = {Elsevier},
month = {feb},
url = {https://doi.org/10.1016/j.jvcir.2019.02.006},
pages = {563--573},
doi = {10.1016/j.jvcir.2019.02.006}
}