Non-Kähler Calabi-Yau geometry and pluriclosed flow
1
Publication type: Journal Article
Publication date: 2023-09-01
scimago Q1
wos Q1
SJR: 2.833
CiteScore: 4.4
Impact factor: 2.3
ISSN: 00217824, 17763371
General Mathematics
Applied Mathematics
Abstract
Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-Kähler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of the Hermitian-Einstein equation on an associated holomorphic Courant algebroid, and thus refer to solutions as Bismut Hermitian-Einstein. This implies Mumford-Takemoto slope stability obstructions, and using these we exhibit infinitely many topologically distinct complex manifolds in every dimension with vanishing first Chern class which do not admit Bismut Hermitian-Einstein metrics. This reformulation also leads to a new description of pluriclosed flow in terms of Hermitian metrics on holomorphic Courant algebroids, implying new global existence results, in particular on all complex non-Kähler surfaces of Kodaira dimension κ≥0. On complex manifolds which admit Bismut-flat metrics we show global existence and convergence of pluriclosed flow to a Bismut-flat metric, which in turn gives a classification of generalized Kähler structures on these spaces. Les métriques Hermitiennes plurifermées avec forme de Bismut-Ricci nulle donnent une extension naturelle des métriques de Calabi-Yau au cadre des variétés complexes non-Kähler, et apparaissent indépendamment en physique mathématique. Nous réinterprétons cette condition en termes de l'équation d'Hermite-Einstein sur un algébroide de Courant holomorphe associé, et nous appellerons donc ces solutions des métriques de Bismut Hermite-Einstein. Cela donne des obstructions de stabilité de pente de Mumford-Takemoto, et en utilisant celles-ci, nous mettons en évidence, pour toute dimension, une infinité de variétés complexes topologiquement distinctes avec première classe de Chern nulle qui n'admettent pas de métrique Bismut Hermite-Einstein. Cette reformulation conduit également à une nouvelle description du flot plurifermé en termes de métriques hermitienne sur les algébroides de Courant holomorphes, impliquant de nouveaux résultats d'existence globale, en particulier sur toutes les surfaces complexes non-Kähler de dimension de Kodaira κ≥0. Sur les variétés complexes qui admettent une métrique Bismut-plate, nous montrons l'existence globale et la convergence d'un flux plurifermé vers une métrique Bismut-plate, qui à son tour donne une classification des structures de Kähler généralisées sur ces espaces.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
2
3
|
|
|
Journal fur die Reine und Angewandte Mathematik
3 publications, 20%
|
|
|
Communications in Mathematical Physics
2 publications, 13.33%
|
|
|
Advances in Mathematics
2 publications, 13.33%
|
|
|
International Journal of Mathematics
1 publication, 6.67%
|
|
|
Annali di Matematica Pura ed Applicata
1 publication, 6.67%
|
|
|
Annals of Global Analysis and Geometry
1 publication, 6.67%
|
|
|
Proceedings of the Royal Society of Edinburgh Section A: Mathematics
1 publication, 6.67%
|
|
|
Journal of Physics A: Mathematical and Theoretical
1 publication, 6.67%
|
|
|
Mathematische Zeitschrift
1 publication, 6.67%
|
|
|
Mathematische Annalen
1 publication, 6.67%
|
|
|
1
2
3
|
Publishers
|
1
2
3
4
5
6
7
|
|
|
Springer Nature
7 publications, 46.67%
|
|
|
Walter de Gruyter
3 publications, 20%
|
|
|
Elsevier
2 publications, 13.33%
|
|
|
World Scientific
1 publication, 6.67%
|
|
|
Cambridge University Press
1 publication, 6.67%
|
|
|
IOP Publishing
1 publication, 6.67%
|
|
|
1
2
3
4
5
6
7
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
15
Total citations:
15
Citations from 2024:
14
(93.34%)
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Garcia Fernandez M., Jordan J., Streets J. Non-Kähler Calabi-Yau geometry and pluriclosed flow // Journal des Mathematiques Pures et Appliquees. 2023. Vol. 177. pp. 329-367.
GOST all authors (up to 50)
Copy
Garcia Fernandez M., Jordan J., Streets J. Non-Kähler Calabi-Yau geometry and pluriclosed flow // Journal des Mathematiques Pures et Appliquees. 2023. Vol. 177. pp. 329-367.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1016/j.matpur.2023.07.002
UR - https://doi.org/10.1016/j.matpur.2023.07.002
TI - Non-Kähler Calabi-Yau geometry and pluriclosed flow
T2 - Journal des Mathematiques Pures et Appliquees
AU - Garcia Fernandez, Mario
AU - Jordan, Joshua
AU - Streets, Jeffrey
PY - 2023
DA - 2023/09/01
PB - Elsevier
SP - 329-367
VL - 177
SN - 0021-7824
SN - 1776-3371
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2023_Garcia Fernandez,
author = {Mario Garcia Fernandez and Joshua Jordan and Jeffrey Streets},
title = {Non-Kähler Calabi-Yau geometry and pluriclosed flow},
journal = {Journal des Mathematiques Pures et Appliquees},
year = {2023},
volume = {177},
publisher = {Elsevier},
month = {sep},
url = {https://doi.org/10.1016/j.matpur.2023.07.002},
pages = {329--367},
doi = {10.1016/j.matpur.2023.07.002}
}