Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method

Тип публикацииJournal Article
Дата публикации2019-06-01
scimago Q1
wos Q1
БС1
SJR1.244
CiteScore11.5
Impact factor5.6
ISSN02632241, 1873412X
Condensed Matter Physics
Electrical and Electronic Engineering
Instrumentation
Applied Mathematics
Краткое описание
To extract impulsive feature from vibration signals with strong background noise and interference components for accurate bearing diagnostics. A multi-stage noise reduction method is proposed based on ensemble empirical mode decomposition (EEMD), wavelet thresholding (WT) and modulation signal bispectrum (MSB). Firstly, noisy vibration signals are applied with EEMD to obtain a list of intrinsic mode functions (IMFs) that leverage the desired modulation components to different degrees. Then, a number of initial IMFs in the high frequency range, which are separated by using the mean of the standardized accumulated modes (MSAM) to have more modulation contents, are further denoised by a wavelet thresholding approach. These cleaned IMFs in the high frequency are combined with the low frequency IMFs to construct a pre-denoised signal that maintains the modulation properties of the raw signal. Finally, modulation signal bispectrum (MSB) is used to extract the modulation signature by suppressing further the residual random noise and deterministic interference components. This multi-stage noise reduction method was validated through a simulation study and two experimental fault cases studies of rolling element bearing. The results were more accurate and reliable in diagnosing the bearing inner and outer race defects in comparison with the individual use of the state-of-the-art EEMD and MSB.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
Measurement: Journal of the International Measurement Confederation
12 публикаций, 19.05%
Measurement Science and Technology
4 публикации, 6.35%
Mechanical Systems and Signal Processing
4 публикации, 6.35%
Sensors
3 публикации, 4.76%
Advanced Engineering Informatics
3 публикации, 4.76%
Machines
2 публикации, 3.17%
Transactions of the Institute of Measurement and Control
2 публикации, 3.17%
Energies
2 публикации, 3.17%
Applied Sciences (Switzerland)
2 публикации, 3.17%
Journal of Vibrational Engineering and Technologies
2 публикации, 3.17%
Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems
2 публикации, 3.17%
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
1 публикация, 1.59%
Materials
1 публикация, 1.59%
Arabian Journal for Science and Engineering
1 публикация, 1.59%
Pure and Applied Geophysics
1 публикация, 1.59%
Science China Technological Sciences
1 публикация, 1.59%
PLoS ONE
1 публикация, 1.59%
ISA Transactions
1 публикация, 1.59%
Journal of Manufacturing Systems
1 публикация, 1.59%
IEEE Transactions on Instrumentation and Measurement
1 публикация, 1.59%
Indian Journal of Physics
1 публикация, 1.59%
Shock and Vibration
1 публикация, 1.59%
Eksploatacja i Niezawodnosc
1 публикация, 1.59%
Mechanisms and Machine Science
1 публикация, 1.59%
Processes
1 публикация, 1.59%
IEEE Access
1 публикация, 1.59%
Reliability Engineering and System Safety
1 публикация, 1.59%
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
1 публикация, 1.59%
Journal of Physics: Conference Series
1 публикация, 1.59%
2
4
6
8
10
12

Издатели

5
10
15
20
25
Elsevier
21 публикация, 33.33%
MDPI
12 публикаций, 19.05%
Springer Nature
7 публикаций, 11.11%
SAGE
5 публикаций, 7.94%
IOP Publishing
5 публикаций, 7.94%
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 7.94%
ASME International
2 публикации, 3.17%
Public Library of Science (PLoS)
1 публикация, 1.59%
Instrument Society of America
1 публикация, 1.59%
Hindawi Limited
1 публикация, 1.59%
Polish Maintenance Society
1 публикация, 1.59%
AIP Publishing
1 публикация, 1.59%
5
10
15
20
25
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
63
Поделиться
Цитировать
ГОСТ |
Цитировать
Guo J. et al. Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method // Measurement: Journal of the International Measurement Confederation. 2019. Vol. 139. pp. 226-235.
ГОСТ со всеми авторами (до 50) Скопировать
Guo J., Zhen D., Li H. Y., Shi Z., Gu F., Ball A. J. Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method // Measurement: Journal of the International Measurement Confederation. 2019. Vol. 139. pp. 226-235.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.measurement.2019.02.072
UR - https://doi.org/10.1016/j.measurement.2019.02.072
TI - Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method
T2 - Measurement: Journal of the International Measurement Confederation
AU - Guo, Junchao
AU - Zhen, Dong
AU - Li, H. Y.
AU - Shi, Zhanqun
AU - Gu, Fengshou
AU - Ball, Andrew J.
PY - 2019
DA - 2019/06/01
PB - Elsevier
SP - 226-235
VL - 139
SN - 0263-2241
SN - 1873-412X
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Guo,
author = {Junchao Guo and Dong Zhen and H. Y. Li and Zhanqun Shi and Fengshou Gu and Andrew J. Ball},
title = {Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method},
journal = {Measurement: Journal of the International Measurement Confederation},
year = {2019},
volume = {139},
publisher = {Elsevier},
month = {jun},
url = {https://doi.org/10.1016/j.measurement.2019.02.072},
pages = {226--235},
doi = {10.1016/j.measurement.2019.02.072}
}