volume 191 pages 104953

Modeling of shock wave propagation in porous magnesium based on artificial neural network

Fanil T. Latypov
Publication typeJournal Article
Publication date2024-04-01
scimago Q1
wos Q1
SJR0.991
CiteScore7.3
Impact factor4.1
ISSN01676636, 18727743
General Materials Science
Instrumentation
Mechanics of Materials
Found 
Found 

Top-30

Journals

1
2
International Journal of Plasticity
2 publications, 33.33%
Dynamics
1 publication, 16.67%
Journal of Magnesium and Alloys
1 publication, 16.67%
Mechanics of Materials
1 publication, 16.67%
Physics of Fluids
1 publication, 16.67%
1
2

Publishers

1
2
3
4
Elsevier
4 publications, 66.67%
MDPI
1 publication, 16.67%
AIP Publishing
1 publication, 16.67%
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
6
Share
Cite this
GOST |
Cite this
GOST Copy
Latypov F. T. et al. Modeling of shock wave propagation in porous magnesium based on artificial neural network // Mechanics of Materials. 2024. Vol. 191. p. 104953.
GOST all authors (up to 50) Copy
Latypov F. T., Fomin E., Krasnikov V. S., Mayer A. E. Modeling of shock wave propagation in porous magnesium based on artificial neural network // Mechanics of Materials. 2024. Vol. 191. p. 104953.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mechmat.2024.104953
UR - https://linkinghub.elsevier.com/retrieve/pii/S0167663624000450
TI - Modeling of shock wave propagation in porous magnesium based on artificial neural network
T2 - Mechanics of Materials
AU - Latypov, Fanil T.
AU - Fomin, E.V.
AU - Krasnikov, Vasiliy S
AU - Mayer, A E
PY - 2024
DA - 2024/04/01
PB - Elsevier
SP - 104953
VL - 191
SN - 0167-6636
SN - 1872-7743
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Latypov,
author = {Fanil T. Latypov and E.V. Fomin and Vasiliy S Krasnikov and A E Mayer},
title = {Modeling of shock wave propagation in porous magnesium based on artificial neural network},
journal = {Mechanics of Materials},
year = {2024},
volume = {191},
publisher = {Elsevier},
month = {apr},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0167663624000450},
pages = {104953},
doi = {10.1016/j.mechmat.2024.104953}
}