Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, volume 649, pages 114-122

Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging

Publication typeJournal Article
Publication date2016-01-01
scimago Q1
SJR1.660
CiteScore11.5
Impact factor6.1
ISSN09215093, 18734936
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
Properties of Cu–Cr–Zr alloy with ultrafine-grained (UFG) structure produced by equal-channel angular pressing (ECAP) via different routes have been investigated. Special attention was paid to the optimization of multi-functional structural, thermal, electrical and mechanical properties of the alloy by aging of UFG one. Multi-pass ECAP via different routes gives rise to the formation of a deformation-induced submicrocrystalline structure with the grain (subgrain) sizes in the range of 200–300 nm depending on applied routes which leads to high hardness and strength in the Cu–Cr–Zr alloy with reduced ductility. Amongst the applied routes, route-Bc was found to be the best processing path for achieving the lowest grain size, the highest hardness and strength. Aging of 8Bc-processed UFG samples increases the hardness and strength of Cu–Cr–Zr alloy while retaining an electrical conductivity comparable to that of aged coarse-grained (CG) one. A satisfactory electrical conductivity of 71%IACS without considerable loss of peak hardness was achieved after aging of 8Bc-processed UFG alloy at 425 °C for 240 min. The precipitation strengthened UFG alloy remains its stable behavior at elevated temperatures up to 450 °C.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18

Publishers

10
20
30
40
50
60
70
10
20
30
40
50
60
70
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?