Nutrition Research, volume 49, pages 23-36
Potential roles of vitamin E in age-related changes in skeletal muscle health
Eunhee Chung
1
,
Huanbiao Mo
2
,
Shu Wang
3
,
Yujiao Zu
3
,
Manal Elfakhani
2
,
Steven R Rios
4
,
Ming-Chien Chyu
5
,
Rong-Sen Yang
6
,
Chwan-Li Shen
7
Publication type: Journal Article
Publication date: 2018-01-01
Journal:
Nutrition Research
scimago Q2
SJR: 0.951
CiteScore: 7.6
Impact factor: 3.4
ISSN: 02715317, 18790739
Endocrinology
Nutrition and Dietetics
Endocrinology, Diabetes and Metabolism
Abstract
Skeletal muscle disorders including sarcopenia are prevalent during the complex biological process of aging. Loss of muscle mass and strength commonly seen in sarcopenia is induced by impaired neuromuscular innervation, transition of skeletal muscle fiber type, and reduced muscle regenerative capacity, all attributable to chronic inflammation, oxidative stress, and mitochondrial dysfunction. Current literature suggests that vitamin E molecules (α-, β-, γ-, δ-tocopherols and the corresponding tocotrienols) with their antioxidant and anti-inflammatory capabilities may mitigate age-associated skeletal dysfunction and enhance muscle regeneration, thus attenuating sarcopenia. Preclinical and human experimental studies show that vitamin E benefits myoblast proliferation, differentiation, survival, membrane repair, mitochondrial efficiency, muscle mass, muscle contractile properties, and exercise capacity. Limited number of human cross-sectional observational studies reveal positive associations between serum tocopherol level and muscle strength. Several factors, including difficulties in validating vitamin E intake and deficiency, variations in muscle-protective activity and metabolism of diverse forms of vitamin E, and lack of understanding of the mechanisms of action, preclude randomized clinical trials of vitamin E in people with sarcopenia. Future research should consider long-term clinical trials of with adequate sample size, advanced imaging technology and omics approaches to investigate underlying mechanisms and assess clinically meaningful parameters such as muscle strength, physical performance, and muscle mass in sarcopenia prevention and/or treatment.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.