Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor
Тип публикации: Journal Article
Дата публикации: 2023-04-01
scimago Q1
wos Q1
БС1
SJR: 1.000
CiteScore: 9.2
Impact factor: 5.0
ISSN: 00303992, 18792545
Electronic, Optical and Magnetic Materials
Atomic and Molecular Physics, and Optics
Electrical and Electronic Engineering
Краткое описание
We investigate the usage of a Schlieren imaging setup to measure the geometrical dimensions of a plasma channel in atomic vapor. Near resonant probe light is used to image the plasma channel in a tenuous vapor and machine learning techniques are tested for extracting quantitative information from the images. By building a database of simulated signals with a range of plasma parameters for training Deep Neural Networks, we demonstrate that they can extract from the Schlieren images reliably and with high accuracy the location, the radius and the maximum ionization fraction of the plasma channel as well as the width of the transition region between the core of the plasma channel and the unionized vapor. We test several different neural network architectures with supervised learning and show that the parameter estimations supplied by the networks are resilient with respect to slight changes of the experimental parameters that may occur in the course of a measurement.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Physical Review D
1 публикация, 50%
|
|
|
Optics and Laser Technology
1 публикация, 50%
|
|
|
1
|
Издатели
|
1
|
|
|
American Physical Society (APS)
1 публикация, 50%
|
|
|
Elsevier
1 публикация, 50%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Всего цитирований:
2
Цитирований c 2024:
1
(50%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Biro G. et al. Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor // Optics and Laser Technology. 2023. Vol. 159. p. 108948.
ГОСТ со всеми авторами (до 50)
Скопировать
Biro G., Pocsai M. A., Barna I. F., Barnaföldi G. G., Moody J. D., Demeter G. Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor // Optics and Laser Technology. 2023. Vol. 159. p. 108948.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.optlastec.2022.108948
UR - https://doi.org/10.1016/j.optlastec.2022.108948
TI - Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor
T2 - Optics and Laser Technology
AU - Biro, G
AU - Pocsai, Mihály Anrás
AU - Barna, Imre F
AU - Barnaföldi, Gergely Gábor
AU - Moody, Joshua D.
AU - Demeter, G.
PY - 2023
DA - 2023/04/01
PB - Elsevier
SP - 108948
VL - 159
SN - 0030-3992
SN - 1879-2545
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Biro,
author = {G Biro and Mihály Anrás Pocsai and Imre F Barna and Gergely Gábor Barnaföldi and Joshua D. Moody and G. Demeter},
title = {Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor},
journal = {Optics and Laser Technology},
year = {2023},
volume = {159},
publisher = {Elsevier},
month = {apr},
url = {https://doi.org/10.1016/j.optlastec.2022.108948},
pages = {108948},
doi = {10.1016/j.optlastec.2022.108948}
}