том 159 страницы 108948

Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor

Тип публикацииJournal Article
Дата публикации2023-04-01
scimago Q1
wos Q1
БС1
SJR1.000
CiteScore9.2
Impact factor5.0
ISSN00303992, 18792545
Electronic, Optical and Magnetic Materials
Atomic and Molecular Physics, and Optics
Electrical and Electronic Engineering
Краткое описание
We investigate the usage of a Schlieren imaging setup to measure the geometrical dimensions of a plasma channel in atomic vapor. Near resonant probe light is used to image the plasma channel in a tenuous vapor and machine learning techniques are tested for extracting quantitative information from the images. By building a database of simulated signals with a range of plasma parameters for training Deep Neural Networks, we demonstrate that they can extract from the Schlieren images reliably and with high accuracy the location, the radius and the maximum ionization fraction of the plasma channel as well as the width of the transition region between the core of the plasma channel and the unionized vapor. We test several different neural network architectures with supervised learning and show that the parameter estimations supplied by the networks are resilient with respect to slight changes of the experimental parameters that may occur in the course of a measurement.
Найдено 
Найдено 

Топ-30

Журналы

1
Physical Review D
1 публикация, 50%
Optics and Laser Technology
1 публикация, 50%
1

Издатели

1
American Physical Society (APS)
1 публикация, 50%
Elsevier
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Biro G. et al. Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor // Optics and Laser Technology. 2023. Vol. 159. p. 108948.
ГОСТ со всеми авторами (до 50) Скопировать
Biro G., Pocsai M. A., Barna I. F., Barnaföldi G. G., Moody J. D., Demeter G. Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor // Optics and Laser Technology. 2023. Vol. 159. p. 108948.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.optlastec.2022.108948
UR - https://doi.org/10.1016/j.optlastec.2022.108948
TI - Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor
T2 - Optics and Laser Technology
AU - Biro, G
AU - Pocsai, Mihály Anrás
AU - Barna, Imre F
AU - Barnaföldi, Gergely Gábor
AU - Moody, Joshua D.
AU - Demeter, G.
PY - 2023
DA - 2023/04/01
PB - Elsevier
SP - 108948
VL - 159
SN - 0030-3992
SN - 1879-2545
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Biro,
author = {G Biro and Mihály Anrás Pocsai and Imre F Barna and Gergely Gábor Barnaföldi and Joshua D. Moody and G. Demeter},
title = {Machine learning methods for schlieren imaging of a plasma channel in tenuous atomic vapor},
journal = {Optics and Laser Technology},
year = {2023},
volume = {159},
publisher = {Elsevier},
month = {apr},
url = {https://doi.org/10.1016/j.optlastec.2022.108948},
pages = {108948},
doi = {10.1016/j.optlastec.2022.108948}
}