Ranking in evolving complex networks
Hao Liao Hao Liao
1
,
Manuel S. Mariani
1, 2
,
Matúš Medo
2, 3, 4
,
Yi-cheng Zhang
5
,
Mingyang Zhou
1
Тип публикации: Journal Article
Дата публикации: 2017-05-01
scimago Q1
wos Q1
БС1
SJR: 5.735
CiteScore: 49.9
Impact factor: 29.5
ISSN: 03701573, 18736270
General Physics and Astronomy
Краткое описание
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Well-established ranking algorithms (such as the popular Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. The recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of real network traffic, prediction of future links, and identification of highly-significant nodes.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
7
8
9
|
|
|
Physica A: Statistical Mechanics and its Applications
9 публикаций, 4.39%
|
|
|
IEEE Access
8 публикаций, 3.9%
|
|
|
Scientific Reports
7 публикаций, 3.41%
|
|
|
Information Sciences
5 публикаций, 2.44%
|
|
|
Chaos, Solitons and Fractals
5 публикаций, 2.44%
|
|
|
Complexity
5 публикаций, 2.44%
|
|
|
Chaos
4 публикации, 1.95%
|
|
|
Physical Review E
4 публикации, 1.95%
|
|
|
Scientometrics
4 публикации, 1.95%
|
|
|
Physics Reports
4 публикации, 1.95%
|
|
|
New Journal of Physics
4 публикации, 1.95%
|
|
|
Journal of Informetrics
4 публикации, 1.95%
|
|
|
Knowledge-Based Systems
4 публикации, 1.95%
|
|
|
Frontiers in Physics
3 публикации, 1.46%
|
|
|
Frontiers in Network Physiology
3 публикации, 1.46%
|
|
|
Social Network Analysis and Mining
3 публикации, 1.46%
|
|
|
Journal of Statistical Mechanics: Theory and Experiment
3 публикации, 1.46%
|
|
|
Future Generation Computer Systems
3 публикации, 1.46%
|
|
|
Computer Science Review
3 публикации, 1.46%
|
|
|
Acta Physica Sinica
3 публикации, 1.46%
|
|
|
AI in the Financial Markets
3 публикации, 1.46%
|
|
|
International Journal of Modern Physics C
2 публикации, 0.98%
|
|
|
Entropy
2 публикации, 0.98%
|
|
|
Annals of Operations Research
2 публикации, 0.98%
|
|
|
Communications in Nonlinear Science and Numerical Simulation
2 публикации, 0.98%
|
|
|
Multimedia Tools and Applications
2 публикации, 0.98%
|
|
|
Journal of Physics: Complexity
2 публикации, 0.98%
|
|
|
Reliability Engineering and System Safety
2 публикации, 0.98%
|
|
|
Expert Systems with Applications
2 публикации, 0.98%
|
|
|
1
2
3
4
5
6
7
8
9
|
Издатели
|
10
20
30
40
50
60
70
|
|
|
Elsevier
61 публикация, 29.76%
|
|
|
Springer Nature
39 публикаций, 19.02%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
31 публикация, 15.12%
|
|
|
IOP Publishing
10 публикаций, 4.88%
|
|
|
MDPI
7 публикаций, 3.41%
|
|
|
Frontiers Media S.A.
7 публикаций, 3.41%
|
|
|
Hindawi Limited
6 публикаций, 2.93%
|
|
|
Association for Computing Machinery (ACM)
5 публикаций, 2.44%
|
|
|
American Physical Society (APS)
5 публикаций, 2.44%
|
|
|
AIP Publishing
4 публикации, 1.95%
|
|
|
SAGE
4 публикации, 1.95%
|
|
|
Oxford University Press
4 публикации, 1.95%
|
|
|
World Scientific
3 публикации, 1.46%
|
|
|
Taylor & Francis
3 публикации, 1.46%
|
|
|
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
3 публикации, 1.46%
|
|
|
Social Science Electronic Publishing
2 публикации, 0.98%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
2 публикации, 0.98%
|
|
|
MIT Press
1 публикация, 0.49%
|
|
|
The Royal Society
1 публикация, 0.49%
|
|
|
Society for Industrial and Applied Mathematics (SIAM)
1 публикация, 0.49%
|
|
|
King Saud University
1 публикация, 0.49%
|
|
|
Public Library of Science (PLoS)
1 публикация, 0.49%
|
|
|
Wiley
1 публикация, 0.49%
|
|
|
Scientific Research Publishing
1 публикация, 0.49%
|
|
|
SciELO
1 публикация, 0.49%
|
|
|
10
20
30
40
50
60
70
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
205
Всего цитирований:
205
Цитирований c 2024:
35
(17.07%)
Самый цитирующий журнал
Цитирований в журнале:
9
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Hao Liao H. L. et al. Ranking in evolving complex networks // Physics Reports. 2017. Vol. 689. pp. 1-54.
ГОСТ со всеми авторами (до 50)
Скопировать
Hao Liao H. L., Mariani M. S., Medo M., Zhang Y., Zhou M. Ranking in evolving complex networks // Physics Reports. 2017. Vol. 689. pp. 1-54.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.physrep.2017.05.001
UR - https://doi.org/10.1016/j.physrep.2017.05.001
TI - Ranking in evolving complex networks
T2 - Physics Reports
AU - Hao Liao, Hao Liao
AU - Mariani, Manuel S.
AU - Medo, Matúš
AU - Zhang, Yi-cheng
AU - Zhou, Mingyang
PY - 2017
DA - 2017/05/01
PB - Elsevier
SP - 1-54
VL - 689
SN - 0370-1573
SN - 1873-6270
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2017_Hao Liao,
author = {Hao Liao Hao Liao and Manuel S. Mariani and Matúš Medo and Yi-cheng Zhang and Mingyang Zhou},
title = {Ranking in evolving complex networks},
journal = {Physics Reports},
year = {2017},
volume = {689},
publisher = {Elsevier},
month = {may},
url = {https://doi.org/10.1016/j.physrep.2017.05.001},
pages = {1--54},
doi = {10.1016/j.physrep.2017.05.001}
}