Dementia Prediction Using Machine Learning
Sara Dhakal
1
,
Sami Azam
1
,
Khan Md. Hasib
2
,
Asif Karim
1
,
Mirjam Jonkman
1
,
A S M Farhan Al Haque
3
Тип публикации: Journal Article
Дата публикации: 2023-03-22
Materials Science (miscellaneous)
Industrial and Manufacturing Engineering
Business and International Management
Краткое описание
Dementia is a chronic and degenerative condition, which has become a major health concern among the elderly. With ever-continuing cases of dementia, it has become a very challenging task in the 21st century to provide care for patients with dementia. This paper proposes a framework for the prediction of dementia using the data collected from the OASIS (Open Access Series of Imaging Studies) project which was made available by the Washington University Alzheimer's Disease Research Centre. Different techniques have been implemented for data imputation, pre-processing and data transformation to create suitable data for training the model. Machine learning approaches like Adaboost (AB), Decision Tree (DT), Extra Tree (ET), Gradient Boost (GB), K-Nearest Neighbour (KNN), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), and SVM (Support Vector Machine) has been used for a combination of features. These techniques have been applied to the full set of features and features selected from Least Absolute Shrinkage and Selection Operator (LASSO) techniques. A comparison between the accuracy, precision, and other metrics based on the results of the classification algorithms has been provided. The experimental results show that the highest accuracy of 96.77% was obtained by Support Vector Machine (SVM) with full features. The proposed methodology is promising and if developed and deployed can be helpful for the rapid assessment of Alzheimer's Disease (AD).
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
IEEE Access
2 публикации, 6.25%
|
|
|
International Journal of Information Technology
2 публикации, 6.25%
|
|
|
Communications in Computer and Information Science
1 публикация, 3.13%
|
|
|
Frontiers in Human Neuroscience
1 публикация, 3.13%
|
|
|
Drying Technology
1 публикация, 3.13%
|
|
|
Healthcare Analytics
1 публикация, 3.13%
|
|
|
Diagnostics
1 публикация, 3.13%
|
|
|
Intelligent Decision Technologies
1 публикация, 3.13%
|
|
|
Service Oriented Computing and Applications
1 публикация, 3.13%
|
|
|
Brain Behavior & Immunity - Health
1 публикация, 3.13%
|
|
|
Lecture Notes in Computer Science
1 публикация, 3.13%
|
|
|
Scientific Reports
1 публикация, 3.13%
|
|
|
Computers in Biology and Medicine
1 публикация, 3.13%
|
|
|
Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring
1 публикация, 3.13%
|
|
|
IFMBE Proceedings
1 публикация, 3.13%
|
|
|
Intelligence-Based Medicine
1 публикация, 3.13%
|
|
|
International Journal of Computational Intelligence Systems
1 публикация, 3.13%
|
|
|
1
2
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
13 публикаций, 40.63%
|
|
|
Springer Nature
7 публикаций, 21.88%
|
|
|
Elsevier
4 публикации, 12.5%
|
|
|
Wiley
2 публикации, 6.25%
|
|
|
Frontiers Media S.A.
1 публикация, 3.13%
|
|
|
Taylor & Francis
1 публикация, 3.13%
|
|
|
MDPI
1 публикация, 3.13%
|
|
|
SAGE
1 публикация, 3.13%
|
|
|
Association for Computing Machinery (ACM)
1 публикация, 3.13%
|
|
|
ifmbe proceedings
1 публикация, 3.13%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
32
Всего цитирований:
32
Цитирований c 2024:
28
(87.51%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Dhakal S. et al. Dementia Prediction Using Machine Learning // Procedia Computer Science. 2023. Vol. 219. pp. 1297-1308.
ГОСТ со всеми авторами (до 50)
Скопировать
Dhakal S., Azam S., Hasib K. M., Karim A., Jonkman M., Haque A. S. M. F. A. Dementia Prediction Using Machine Learning // Procedia Computer Science. 2023. Vol. 219. pp. 1297-1308.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.procs.2023.01.414
UR - https://doi.org/10.1016/j.procs.2023.01.414
TI - Dementia Prediction Using Machine Learning
T2 - Procedia Computer Science
AU - Dhakal, Sara
AU - Azam, Sami
AU - Hasib, Khan Md.
AU - Karim, Asif
AU - Jonkman, Mirjam
AU - Haque, A S M Farhan Al
PY - 2023
DA - 2023/03/22
PB - Elsevier
SP - 1297-1308
VL - 219
SN - 1877-0509
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Dhakal,
author = {Sara Dhakal and Sami Azam and Khan Md. Hasib and Asif Karim and Mirjam Jonkman and A S M Farhan Al Haque},
title = {Dementia Prediction Using Machine Learning},
journal = {Procedia Computer Science},
year = {2023},
volume = {219},
publisher = {Elsevier},
month = {mar},
url = {https://doi.org/10.1016/j.procs.2023.01.414},
pages = {1297--1308},
doi = {10.1016/j.procs.2023.01.414}
}