volume 240 pages 111604

Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach

Nima Pahlevan 1
Brandon R. Smith 1
John Schalles 2
C.E. Binding 3
Zhigang Cao 4
Ronghua Ma 4
Krista Alikas 5
Kersti Kangro 5
Daniela Gurlin 6
Nguyen Thi Thu Ha 7
Bunkei Matsushita 8
Wesley J. Moses 9
Steven Greb 10
Moritz F. Lehmann 11
Michael Ondrusek 12
Natascha M. Oppelt 13
Richard P. Stumpf 14
Publication typeJournal Article
Publication date2020-04-01
scimago Q1
wos Q1
SJR3.972
CiteScore22.6
Impact factor11.4
ISSN00344257, 18790704
Soil Science
Geology
Computers in Earth Sciences
Abstract
Consistent, cross-mission retrievals of near-surface concentration of chlorophyll-a (Chla) in various aquatic ecosystems with broad ranges of trophic levels have long been a complex undertaking. Here, we introduce a machine-learning model, the Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in inland and coastal waters. The model is trained and validated using a sizeable database of co-located Chla measurements (n = 2943) and in situ hyperspectral radiometric data resampled to simulate the Multispectral Instrument (MSI) and the Ocean and Land Color Imager (OLCI) onboard Sentinel-2A/B and Sentinel-3A/B, respectively. Our performance evaluations of the model, via two-thirds of the in situ dataset with Chla ranging from 0.2 to 1209 mg/m3 and a mean Chla of 21.7 mg/m3, suggest significant improvements in Chla retrievals. For both MSI and OLCI, the mean absolute logarithmic error (MAE) and logarithmic bias (Bias) across the entire range reduced by 40–60%, whereas the root mean squared logarithmic error (RMSLE) and the median absolute percentage error (MAPE) improved two-to-three times over those from the state-of-the-art algorithms. Using independent Chla matchups (n
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
70
80
Remote Sensing
76 publications, 18.49%
Water (Switzerland)
20 publications, 4.87%
Science of the Total Environment
19 publications, 4.62%
Remote Sensing of Environment
19 publications, 4.62%
ISPRS Journal of Photogrammetry and Remote Sensing
15 publications, 3.65%
Ecological Indicators
12 publications, 2.92%
Ecological Informatics
12 publications, 2.92%
IEEE Transactions on Geoscience and Remote Sensing
11 publications, 2.68%
Frontiers in Remote Sensing
10 publications, 2.43%
Remote Sensing Applications: Society and Environment
8 publications, 1.95%
International Journal of Applied Earth Observation and Geoinformation
7 publications, 1.7%
Frontiers in Marine Science
6 publications, 1.46%
Environmental Monitoring and Assessment
6 publications, 1.46%
Water Research
6 publications, 1.46%
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
6 publications, 1.46%
Scientific data
5 publications, 1.22%
Environmental Science and Pollution Research
5 publications, 1.22%
Journal of Hydrology
5 publications, 1.22%
Frontiers in Environmental Science
4 publications, 0.97%
Environmental Research
4 publications, 0.97%
Environmental Pollution
4 publications, 0.97%
International Journal of Remote Sensing
4 publications, 0.97%
Journal of Hydrology: Regional Studies
4 publications, 0.97%
Limnology and Oceanography: Methods
3 publications, 0.73%
Sustainability
3 publications, 0.73%
Applied Sciences (Switzerland)
3 publications, 0.73%
Earth-Science Reviews
3 publications, 0.73%
Journal of Great Lakes Research
3 publications, 0.73%
GIScience and Remote Sensing
3 publications, 0.73%
10
20
30
40
50
60
70
80

Publishers

20
40
60
80
100
120
140
160
Elsevier
153 publications, 37.23%
MDPI
119 publications, 28.95%
Institute of Electrical and Electronics Engineers (IEEE)
34 publications, 8.27%
Springer Nature
33 publications, 8.03%
Frontiers Media S.A.
21 publications, 5.11%
Taylor & Francis
12 publications, 2.92%
Wiley
10 publications, 2.43%
American Geophysical Union
6 publications, 1.46%
Optica Publishing Group
4 publications, 0.97%
SPIE-Intl Soc Optical Eng
3 publications, 0.73%
IOP Publishing
2 publications, 0.49%
Copernicus
2 publications, 0.49%
China Meteorological Press
1 publication, 0.24%
International Association for Great Lakes Research
1 publication, 0.24%
Water Environment Federation
1 publication, 0.24%
Freshwater Biological Association
1 publication, 0.24%
Hindawi Limited
1 publication, 0.24%
Research Square Platform LLC
1 publication, 0.24%
SAGE
1 publication, 0.24%
SciELO
1 publication, 0.24%
Saint-Petersburg Research Center of the Russian Academy of Science
1 publication, 0.24%
American Chemical Society (ACS)
1 publication, 0.24%
IWA Publishing
1 publication, 0.24%
National Inquiry Services Center (NISC)
1 publication, 0.24%
20
40
60
80
100
120
140
160
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
411
Share
Cite this
GOST |
Cite this
GOST Copy
Pahlevan N. et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach // Remote Sensing of Environment. 2020. Vol. 240. p. 111604.
GOST all authors (up to 50) Copy
Pahlevan N., Smith B. R., Schalles J., Binding C., Cao Z., Ma R., Alikas K., Kangro K., Gurlin D., Ha N. T. T., Matsushita B., Moses W. J., Greb S., Lehmann M. F., Ondrusek M., Oppelt N. M., Stumpf R. P. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach // Remote Sensing of Environment. 2020. Vol. 240. p. 111604.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.rse.2019.111604
UR - https://doi.org/10.1016/j.rse.2019.111604
TI - Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach
T2 - Remote Sensing of Environment
AU - Pahlevan, Nima
AU - Smith, Brandon R.
AU - Schalles, John
AU - Binding, C.E.
AU - Cao, Zhigang
AU - Ma, Ronghua
AU - Alikas, Krista
AU - Kangro, Kersti
AU - Gurlin, Daniela
AU - Ha, Nguyen Thi Thu
AU - Matsushita, Bunkei
AU - Moses, Wesley J.
AU - Greb, Steven
AU - Lehmann, Moritz F.
AU - Ondrusek, Michael
AU - Oppelt, Natascha M.
AU - Stumpf, Richard P.
PY - 2020
DA - 2020/04/01
PB - Elsevier
SP - 111604
VL - 240
SN - 0034-4257
SN - 1879-0704
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Pahlevan,
author = {Nima Pahlevan and Brandon R. Smith and John Schalles and C.E. Binding and Zhigang Cao and Ronghua Ma and Krista Alikas and Kersti Kangro and Daniela Gurlin and Nguyen Thi Thu Ha and Bunkei Matsushita and Wesley J. Moses and Steven Greb and Moritz F. Lehmann and Michael Ondrusek and Natascha M. Oppelt and Richard P. Stumpf},
title = {Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach},
journal = {Remote Sensing of Environment},
year = {2020},
volume = {240},
publisher = {Elsevier},
month = {apr},
url = {https://doi.org/10.1016/j.rse.2019.111604},
pages = {111604},
doi = {10.1016/j.rse.2019.111604}
}