Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer
2
Xiangji Haidun Technology Co., Ltd., Changsha, Hunan, 410199, P.R. China
|
Тип публикации: Journal Article
Дата публикации: 2023-12-01
scimago Q2
wos Q1
БС1
SJR: 0.664
CiteScore: 8.5
Impact factor: 4.6
ISSN: 13861425, 18733557
PubMed ID:
37454497
Spectroscopy
Analytical Chemistry
Atomic and Molecular Physics, and Optics
Instrumentation
Краткое описание
Rapid identification of unknown material samples using portable or handheld Raman spectroscopy detection equipment is becoming a common analytical tool. However, the design and implementation of a set of Raman spectroscopy-based devices for substance identification must include spectral sampling of standard reference substance samples, resolution matching between different devices, and the training process of the corresponding classification models. The process of selecting a suitable classification model is frequently time-consuming, and when the number of classes of substances to be recognised increases dramatically, recognition accuracy decreases dramatically. In this paper, we propose a fast classification method for Raman spectra based on deep metric learning networks combined with the Gramian angular difference field (GADF) image generation approach. First, we uniformly convert Raman spectra acquired at different resolutions into GADF images of the same resolution, addressing spectral dimension disparities induced by resolution differences in different Raman spectroscopy detection devices. Second, a network capable of implementing nonlinear distance measurements between GADF images of different classes of substances is designed based on a deep metric learning approach. The Raman spectra of 450 different mineral classes obtained from the RRUFF database were converted into GADF images and used to train this deep metric learning network. Finally, the trained network can be installed on an embedded computing platform and used in conjunction with portable or handheld Raman spectroscopic detection sensors to perform material identification tasks at various scales. A series of experiments demonstrate that our trained deep metric learning network outperforms existing mainstream machine learning models on classification tasks of different sizes. For the two tasks of Raman spectral classification of natural minerals of 260 classes and Raman spectral classification of pathogenic bacteria of 8 classes with significant noise, our suggested model achieved 98.05% and 90.13% classification accuracy, respectively. Finally, we also deployed the model in a handheld Raman spectrometer and conducted identification experiments on 350 samples of chemical substances attributed to 32 classes, achieving a classification accuracy of 99.14%. These results demonstrate that our method can greatly improve the efficiency of developing Raman spectroscopy-based substance detection devices and can be widely used in tasks of unknown substance identification.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Journal of Analytical Atomic Spectrometry
2 публикации, 28.57%
|
|
|
Applied Spectroscopy Reviews
1 публикация, 14.29%
|
|
|
Chemical Engineering Journal
1 публикация, 14.29%
|
|
|
Analytical Chemistry
1 публикация, 14.29%
|
|
|
Environmental Quality Management
1 публикация, 14.29%
|
|
|
1
2
|
Издатели
|
1
2
|
|
|
Royal Society of Chemistry (RSC)
2 публикации, 28.57%
|
|
|
Taylor & Francis
1 публикация, 14.29%
|
|
|
Elsevier
1 публикация, 14.29%
|
|
|
American Chemical Society (ACS)
1 публикация, 14.29%
|
|
|
SPIE-Intl Soc Optical Eng
1 публикация, 14.29%
|
|
|
Wiley
1 публикация, 14.29%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
7
Всего цитирований:
7
Цитирований c 2024:
7
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Cai Y. et al. Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer // Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2023. Vol. 303. p. 123085.
ГОСТ со всеми авторами (до 50)
Скопировать
Cai Y., Yao Z., Cheng X., He Y., Li S., Pan J. Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer // Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2023. Vol. 303. p. 123085.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.saa.2023.123085
UR - https://doi.org/10.1016/j.saa.2023.123085
TI - Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer
T2 - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
AU - Cai, Yaoyi
AU - Yao, Zhiyi
AU - Cheng, Xi
AU - He, Yixuan
AU - Li, Shiwen
AU - Pan, Jiaji
PY - 2023
DA - 2023/12/01
PB - Elsevier
SP - 123085
VL - 303
PMID - 37454497
SN - 1386-1425
SN - 1873-3557
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Cai,
author = {Yaoyi Cai and Zhiyi Yao and Xi Cheng and Yixuan He and Shiwen Li and Jiaji Pan},
title = {Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer},
journal = {Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy},
year = {2023},
volume = {303},
publisher = {Elsevier},
month = {dec},
url = {https://doi.org/10.1016/j.saa.2023.123085},
pages = {123085},
doi = {10.1016/j.saa.2023.123085}
}