том 271 страницы 120-128

Deciphering language disturbances in schizophrenia: A study using fine-tuned language models

Renyu Li 1
Minne Cao 2
Dawei Fu 1
Wei Wei 2
Dequan Wang 2
Zhaoxia Yuan 2
Ruofei Hu 1, 3
Rong Hu 1, 3
Weibin Deng 2, 4
1
 
DAMO Academy, Alibaba Group, Hangzhou, China
4
 
Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, China
Тип публикацииJournal Article
Дата публикации2024-09-01
scimago Q1
wos Q1
БС1
SJR1.213
CiteScore5.6
Impact factor3.5
ISSN09209964, 15732509
Краткое описание
This research presents two stable language metrics, namely Successful Prediction Rate (SPR) and Disfluency (DF), to objectively quantify the linguistic disturbances associated with schizophrenia. These novel language metrics can capture both off-topic responses and incoherence in patients' speech by modeling speech information and fine-tuning techniques. Additionally, these metrics exhibit cultural sensitivity while providing a more comprehensive evaluation of linguistic abnormalities in schizophrenia. This research fine-tuned the ELECTRA Pretrained Language Model on a 750 MB text corpus obtained from major Chinese mental health forums. The effectiveness of the fine-tuned language model is verified on a group comprising 38 individuals diagnosed with schizophrenia and 25 meticulously matched healthy controls. The study explores the association between the fine-tuned language model and the Positive and Negative Syndrome Scale (PANSS) items. The results demonstrate that SPR is higher in healthy controls, indicating better language understanding by the pre-trained language model. Conversely, DF is higher in individuals with schizophrenia, indicating more inconsistent language structure. The relationship between linguistic features and P2 (conceptual disorganization) reveals that patients with positive P2 exhibit lower SPR and higher DF. Binary logistic regression using the combined SPR and DF features achieves 84.5 % accuracy in classifying P2, exceeding the performance of traditional features by 20.5 %. Moreover, the proposed linguistic features outperform traditional linguistic features in discriminating FTD (formal thought disorder), as demonstrated by multivariate linear regression analysis.
Найдено 
Найдено 

Топ-30

Журналы

1
Psychological Medicine
1 публикация, 25%
Communications Medicine
1 публикация, 25%
1

Издатели

1
Cold Spring Harbor Laboratory
1 публикация, 25%
Elsevier
1 публикация, 25%
Cambridge University Press
1 публикация, 25%
Springer Nature
1 публикация, 25%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Поделиться
Цитировать
ГОСТ |
Цитировать
Li R. et al. Deciphering language disturbances in schizophrenia: A study using fine-tuned language models // Schizophrenia Research. 2024. Vol. 271. pp. 120-128.
ГОСТ со всеми авторами (до 50) Скопировать
Li R., Cao M., Fu D., Wei W., Dequan Wang, Yuan Z., Hu R., Hu R., Deng W. Deciphering language disturbances in schizophrenia: A study using fine-tuned language models // Schizophrenia Research. 2024. Vol. 271. pp. 120-128.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.schres.2024.07.016
UR - https://linkinghub.elsevier.com/retrieve/pii/S0920996424003219
TI - Deciphering language disturbances in schizophrenia: A study using fine-tuned language models
T2 - Schizophrenia Research
AU - Li, Renyu
AU - Cao, Minne
AU - Fu, Dawei
AU - Wei, Wei
AU - Dequan Wang
AU - Yuan, Zhaoxia
AU - Hu, Ruofei
AU - Hu, Rong
AU - Deng, Weibin
PY - 2024
DA - 2024/09/01
PB - Elsevier
SP - 120-128
VL - 271
PMID - 39024960
SN - 0920-9964
SN - 1573-2509
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Li,
author = {Renyu Li and Minne Cao and Dawei Fu and Wei Wei and Dequan Wang and Zhaoxia Yuan and Ruofei Hu and Rong Hu and Weibin Deng},
title = {Deciphering language disturbances in schizophrenia: A study using fine-tuned language models},
journal = {Schizophrenia Research},
year = {2024},
volume = {271},
publisher = {Elsevier},
month = {sep},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0920996424003219},
pages = {120--128},
doi = {10.1016/j.schres.2024.07.016}
}
Профили