Open Access
Open access
Translational Oncology, volume 13, issue 4, pages 100754

Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer PDX Model

Publication typeJournal Article
Publication date2020-04-01
scimago Q1
wos Q1
SJR1.263
CiteScore8.4
Impact factor4.5
ISSN19365233
Cancer Research
Oncology
Abstract
Deposition, remodeling, and signaling of the extracellular matrix facilitate tumor growth and metastasis. Here, we demonstrated that an enzyme, collagen prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), which is involved in collagen synthesis and deposition, had elevated expression in colorectal cancers (CRCs) as compared to normal colonic tissues. The expression of P4HA1 in CRCs was independent of patient's age, race/ethnicity, gender, pathologic stage and grade, tumor location, and microsatellite instability (MSI) and p53 status. By modulating P4HA1 with shRNA, there was a reduction in malignant phenotypes of CRCs, including cell proliferation, colony formation, invasion, migration, and tumor growth, in mice regardless of their p53 and MSI status. Immunoblot analysis of excised xenograft tumors developed from cells with silenced PH4HA1 showed low levels of proliferating cell nuclear antigen. Further, in CRC mouse models, silencing of P4HA1 in HT29 cells resulted in less metastasis to liver and bone. P4HA1 expression was regulated by miR-124, and inhibition of cell growth was noted for CRC cells treated with miR-124. Furthermore, low levels of the transcriptional repressor EZH2 reduced P4HA1 expression in CRC cells. Inhibition of P4HA1 with the small molecule inhibitor diethyl-pythiDC decreased AGO2 and MMP1, which are P4HA1 target molecules, and reduced the malignant phenotypes of CRC cells. Treatment of CRC patient-derived xenografts that exhibit high expression of P4HA1 with diethyl-pythiDC resulted in tumor regression. Thus, the present study shows that P4HA1 contributes to CRC progression and metastasis and that targeting of P4HA1 with diethyl-pythiDC could be an effective therapeutic strategy for aggressive CRCs.
Siegel R.L., Miller K.D., Jemal A.
2020-01-08 citations by CoLab: 16165 Abstract  
Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
Maletzki C., Bock S., Fruh P., Macius K., Witt A., Prall F., Linnebacher M.
Laboratory Investigation scimago Q1 wos Q1
2020-01-01 citations by CoLab: 34 Abstract  
Patient-derived xenograft (PDX) models have been rediscovered as meaningful research tool. By using severely immunodeficient mice, high-engraftment rates can be theoretically achieved, permitting clinical stratification strategies. Apart from engraftment efficacy, tolerability towards certain cytostatic drugs varies among individual mouse strains thus impeding large-scale screenings. Here, we aimed at optimizing an in vivo treatment schedule using the widely applied cytostatic drug 5-fluoruracil (5-FU) for exemplary response prediction in colorectal cancer (CRC) PDX models. Four different individual CRC PDX models were engrafted into NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice. Mice with established PDX were allocated to different treatment groups, receiving 5-FU, the oral prodrug Capecitabine, or 5-FU/leucovorin (LV) at different doses. Body weight, tumor size, and general behavior were assessed during therapy. Ex vivo analyses were done from blood samples, liver, as well as tumor resection specimen. Engraftment efficacy was high as expected in NSG mice, yielding stable PDX growth for therapy stratification. However, overall tolerability towards 5-FU was unexpectedly low, whereas the prodrug Capecitabine as well as the combination of 5-FU/LV at low doses were well tolerated. Accompanying plasma level determination of DYPD, the rate-limiting enzyme for 5-FU-mediated toxicity, revealed reduced activity in NSG mice compared with other common laboratory mouse strains, offering a likely explanation for the drug incompatibility. Also, the De Ritis quotient was highly elevated in treated mice, reflecting overall organ injury even at low doses. Summarizing these findings, NSG mice are ideal hosts for in vivo engraftment studies. However, the complex immunodeficiency reduces tolerance to certain drugs, thus making those mice especially sensitive. Consequently, such dose finding and tolerance tests constitute a necessity for similar cancer precision medicine approaches. The severe immunodeficiency of NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice, a widely used strain for generating patient-derived xenografts from primary tumors, impairs drug metabolism and reduces tolerability towards common cytostatic drugs. Consequently, dose finding and tolerance tests are strongly recommended prior to perform large-scale cancer precision medicine approaches.
Gawel D.R., Lee E.J., Li X., Lilja S., Matussek A., Schäfer S., Olsen R.S., Stenmarker M., Zhang H., Benson M.
Scientific Reports scimago Q1 wos Q1 Open Access
2019-10-30 citations by CoLab: 13 PDF Abstract  
Screening programs for colorectal cancer (CRC) often rely on detection of blood in stools, which is unspecific and leads to a large number of colonoscopies of healthy subjects. Painstaking research has led to the identification of a large number of different types of biomarkers, few of which are in general clinical use. Here, we searched for highly accurate combinations of biomarkers by meta-analyses of genome- and proteome-wide data from CRC tumors. We focused on secreted proteins identified by the Human Protein Atlas and used our recently described algorithms to find optimal combinations of proteins. We identified nine proteins, three of which had been previously identified as potential biomarkers for CRC, namely CEACAM5, LCN2 and TRIM28. The remaining proteins were PLOD1, MAD1L1, P4HA1, GNS, C12orf10 and P3H1. We analyzed these proteins in plasma from 80 patients with newly diagnosed CRC and 80 healthy controls. A combination of four of these proteins, TRIM28, PLOD1, CEACAM5 and P4HA1, separated a training set consisting of 90% patients and 90% of the controls with high accuracy, which was verified in a test set consisting of the remaining 10%. Further studies are warranted to test our algorithms and proteins for early CRC diagnosis.
Cao X.P., Cao Y., Li W.J., Zhang H.H., Zhu Z.M.
2019-08-01 citations by CoLab: 48 Abstract  
Hypoxia-inducible factor 1α (HIF1α) activation is profoundly implicated in the initiation and progression of multiple malignant tumors. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1) is the active catalytic component of prolyl 4-hydroxylase and has been reported to promote tumor progression in several cancers. In this study, we revealed that P4HA1 was highly expressed in pancreatic ductal adenocarcinoma (PDAC) and predicted a poor clinical outcome. Notably, elevated expression of P4HA1 in PDAC cells was HIF1α-dependent. Gene set enrichment analysis of The Cancer Genome Atlas (TCGA) cohort demonstrated a close link between P4HA1 expression and glycolysis and hypoxia gene signatures in PDAC. Knockdown of P4HA1 significantly suppressed the glycolytic activity of PDAC cells as revealed by reduced glucose utilization and lactate production. Consistently, there was a close correlation between P4HA1 and glycolysis genes. Moreover, we found that P4HA1 can enhance HIF1α stability, indicating a positive feedback loop between HIF1α and P4HA1 in PDAC. Genetic silencing of P4HA1 significantly inhibited the cell proliferation , chemoresistance, and stemness of PDAC cells. Collectively, our findings identify the P4HA1-HIF1α loop as a critical regulator in glycolysis and oncogenic activities of PDAC and provide a potential target for pancreatic cancer treatment. • HIF1α-dependent P4HA1 expression predicts a poor prognosis in PDAC. • P4HA1 correlates the glycolytic phenotypes of PDAC cells. • P4HA1 regulates HIF1α activity in PDAC cells. • P4HA1 knockdown inhibits the malignant phenotypes of PDAC cells.
Atkinson A., Renziehausen A., Wang H., Lo Nigro C., Lattanzio L., Merlano M., Rao B., Weir L., Evans A., Matin R., Harwood C., Szlosarek P., Pickering J.G., Fleming C., Sim V.R., et. al.
2019-05-01 citations by CoLab: 35 Abstract  
Appropriate post-translational processing of collagen requires prolyl hydroxylation, catalyzed by collagen prolyl 3-hydroxylase and collagen prolyl 4-hydroxylase, and is essential for normal cell function. Here we have investigated the expression, transcriptional regulation, and function of the collagen prolyl 3-hydroxylase and collagen prolyl 4-hydroxylase families in melanoma. We show that the collagen prolyl 3-hydroxylase family exemplified by Leprel1 and Leprel2 is subject to methylation-dependent transcriptional silencing in primary and metastatic melanoma consistent with a tumor suppressor function. In contrast, although there is transcriptional silencing of P4HA3 in a subset of melanomas, the collagen prolyl 4-hydroxylase family members P4HA1, P4HA2, and P4HA3 are often overexpressed in melanoma, expression being prognostic of worse clinical outcomes. Consistent with tumor suppressor function, ectopic expression of Leprel1 and Leprel2 inhibits melanoma proliferation, whereas P4HA2 and P4HA3 increase proliferation, and particularly invasiveness, of melanoma cells. Pharmacological inhibition with multiple selective collagen prolyl 4-hydroxylase inhibitors reduces proliferation and inhibits invasiveness of melanoma cells. Together, our data identify the collagen prolyl 3-hydroxylase and collagen prolyl 4-hydroxylase families as potentially important regulators of melanoma growth and invasiveness and suggest that selective inhibition of collagen prolyl 4-hydroxylase is an attractive strategy to reduce the invasive properties of melanoma cells.
van Huizen N.A., Coebergh van den Braak R.R., Doukas M., Dekker L.J., IJzermans J.N., Luider T.M.
Journal of Biological Chemistry scimago Q1 wos Q2 Open Access
2019-01-01 citations by CoLab: 63 Abstract  
Changes to extracellular matrix (ECM) structures are linked to tumor cell proliferation and metastasis. We previously reported that naturally occurring peptides of collagen type I are elevated in urine of patients with colorectal liver metastasis (CRLM). In the present study, we took an MS-based proteomic approach to identify specific collagen types that are up-regulated in CRLM tissues compared with healthy, adjacent liver tissues from the same patients. We found that 19 of 22 collagen-α chains are significantly up-regulated (p
Toss M.S., Miligy I.M., Gorringe K.L., AlKawaz A., Khout H., Ellis I.O., Green A.R., Rakha E.A.
British Journal of Cancer scimago Q1 wos Q1
2018-11-09 citations by CoLab: 35 Abstract  
Extracellular matrix (ECM) plays a crucial role in tumour behaviour. Prolyl-4-hydroxlase-A2 (P4HA2) is a key enzyme in ECM remodelling. This study aims to evaluate the prognostic significance of P4HA2 in breast ductal carcinoma in situ (DCIS). P4HA2 expression was assessed immunohistochemically in malignant cells and surrounding stroma of a large DCIS cohort comprising 481 pure DCIS and 196 mixed DCIS and invasive carcinomas. Outcome analysis was evaluated using local recurrence free interval (LRFI). High P4HA2 expression was detected in malignant cells of half of pure DCIS whereas its expression in stroma was seen in 25% of cases. Higher P4HA2 expression was observed in mixed DCIS cases compared to pure DCIS both in tumour cells and in stroma. High P4HA2 was associated with features of high risk DCIS including younger age, higher grade, comedo necrosis, triple negative and HER2-positive phenotypes. Interaction between P4HA2 and radiotherapy was also observed regarding the outcome. High P4HA2 expression was an independent prognostic factor in predicting shorter LRFI. P4HA2 plays a role in DCIS progression and can potentially be used to predict DCIS outcome. Incorporation of P4HA2 with other clinicopathological parameters could refine DCIS risk stratification that can potentially guide management decisions.
Xiong G., Stewart R.L., Chen J., Gao T., Scott T.L., Samayoa L.M., O’Connor K., Lane A.N., Xu R.
Nature Communications scimago Q1 wos Q1 Open Access
2018-10-26 citations by CoLab: 195 PDF Abstract  
Collagen prolyl 4-hydroxylase (P4H) expression and collagen hydroxylation in cancer cells are necessary for breast cancer progression. Here, we show that P4H alpha 1 subunit (P4HA1) protein expression is induced in triple-negative breast cancer (TNBC) and HER2 positive breast cancer. By modulating alpha ketoglutarate (α-KG) and succinate levels P4HA1 expression reduces proline hydroxylation on hypoxia-inducible factor (HIF) 1α, enhancing its stability in cancer cells. Activation of the P4HA/HIF-1 axis enhances cancer cell stemness, accompanied by decreased oxidative phosphorylation and reactive oxygen species (ROS) levels. Inhibition of P4HA1 sensitizes TNBC to the chemotherapeutic agent docetaxel and doxorubicin in xenografts and patient-derived models. We also show that increased P4HA1 expression correlates with short relapse-free survival in TNBC patients who received chemotherapy. These results suggest that P4HA1 promotes chemoresistance by modulating HIF-1-dependent cancer cell stemness. Targeting collagen P4H is a promising strategy to inhibit tumor progression and sensitize TNBC to chemotherapeutic agents. Hyperactivation of HIF-1α is crucial in progression of triple-negative breast cancer, but how HIF-1α stability is maintained in a hypoxia-independent manner is unclear. Here, the authors show collagen prolyl-4-hydroylase 1 stabilises HIF-1α and is involved in chemoresistance in TNBC.
Duan Y., Dong Y., Dang R., Hu Z., Yang Y., Hu Y., Cheng J.
Cell Biology International scimago Q2 wos Q3
2018-09-16 citations by CoLab: 46 Abstract  
Ovarian cancer is one of the most common gyneacologic malignancies, with high morbidity and high mortality. Hsa-miR-122-5p (miR-122) has been reported with tumor-suppressing roles in various cancers. In this study, miR-122 was overexpressed in ovarian cancer cells, and phenotypic experiments demonstrated that miR-122 inhibited migration and invasion in SKOV3 and OVCAR3 cells. MiR-122 also suppressed epithelial mesenchymal transition (EMT), evidenced by expression changes of E-cadherin, vimentin, matrix metalloproteinase (MMP)2, and MMP14. Prolyl-4-hydroxylase subunit alpha-1 (P4HA1) was identified as a target of miR-122, and downregulated by miR-122. MiR-122-induced the elevation of migration, invasion, and EMT were recovered by P4HA1. Additionally, miR-122 restrained the tumor metastasis of SKOV3 cells in peritoneal cavity of nude mice. In summary, we demonstrated that miR-122 inhibited migration, invasion, EMT, and metastasis in peritoneal cavity of ovarian cancer cells by targeting P4HA1 for the first time, which shed lights on the discovery of miR-122 and P4HA1 as possible potential diagnostic markers and therapeutic targets for ovarian cancer.
Grasset E.M., Bertero T., Bozec A., Friard J., Bourget I., Pisano S., Lecacheur M., Maiel M., Bailleux C., Emelyanov A., Ilie M., Hofman P., Meneguzzi G., Duranton C., Bulavin D.V., et. al.
Cancer Research scimago Q1 wos Q1
2018-09-14 citations by CoLab: 78 Abstract  
Abstract In squamous cell carcinoma (SCC), tissue invasion by collectively invading cells requires physical forces applied by tumor cells on their surrounding extracellular matrix (ECM). Cancer-related ECM is composed of thick collagen bundles organized by carcinoma-associated fibroblasts (CAF) within the tumor stroma. Here, we show that SCC cell collective invasion is driven by the matrix-dependent mechano-sensitization of EGF signaling in cancer cells. Calcium (Ca2+) was a potent intracellular second messenger that drove actomyosin contractility. Tumor-derived matrix stiffness and EGFR signaling triggered increased intracellular Ca2+ through CaV1.1 expression in SCC cells. Blocking L-type calcium channel expression or activity using Ca2+ channel blockers verapamil and diltiazem reduced SCC cell collective invasion both in vitro and in vivo. These results identify verapamil and diltiazem, two drugs long used in medical care, as novel therapeutic strategies to block the tumor-promoting activity of the tumor niche. Significance: This work demonstrates that calcium channels blockers verapamil and diltiazem inhibit mechano-sensitization of EGF-dependent cancer cell collective invasion, introducing potential clinical strategies against stromal-dependent collective invasion. Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/18/5229/F1.large.jpg. Cancer Res; 78(18); 5229–42. ©2018 AACR.
Chakravarthi B.V., Rodriguez Pena M.D., Agarwal S., Chandrashekar D.S., Hodigere Balasubramanya S.A., Jabboure F.J., Matoso A., Bivalacqua T.J., Rezaei K., Chaux A., Grizzle W.E., Sonpavde G., Gordetsky J., Netto G.J., Varambally S.
Neoplasia scimago Q1 wos Q1 Open Access
2018-09-01 citations by CoLab: 50 Abstract  
Genomic and transcriptome sequencing of bladder cancer (BLCA) has identified multiple molecular alterations during cancer progression. Many of these identified genetic and epigenetic changes play a role in the progression of this disease. Studies have identified molecular subtypes in muscle-invasive bladder cancer (MIBC) with different sensitivities to frontline therapy suggesting the heterogeneity in these tumors and the importance of molecular characterization of MIBC to provide effective treatment. Specifically, it has become increasingly evident, as demonstrated by The Cancer Genome Atlas project, that metabolic enzymes are commonly dysregulated in BLCA. Elevated expression of multiple metabolic enzymes is due to the increased demand from rapidly proliferating BLCA cells requiring extensive nucleotide synthesis. Cancer cells utilize the de novo purine and pyrimidine biosynthetic pathway as a source of their nucleotide needs. In this study, we show that phosphoribosyl aminoimidazole succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine biosynthetic pathway, is significantly overexpressed in BLCA. Immunohistochemical staining of paraffin-embedded tissue sections showed that PAICS is overexpressed in MIBC. Furthermore, we found that tumor suppressor miR-128 negatively regulated PAICS expression by binding to its 3'-untranslated region. We also found that PAICS induces EMT by positively regulating SNAI1 and by a reduction in E-cadherin expression. Additionally, our in vitro functional studies and in vivo chicken chorioallantoic membrane assay show that PAICS plays a critical role in BLCA cell proliferation, invasion, and tumor growth. Collectively, our data suggest that targeting PAICS may provide a therapeutic option in BLCA.
Chakravarthi B.V., Chandrashekar D.S., Agarwal S., Balasubramanya S.A., Pathi S.S., Goswami M.T., Jing X., Wang R., Mehra R., Asangani I.A., Chinnaiyan A.M., Manne U., Sonpavde G., Netto G.J., Gordetsky J., et. al.
Molecular Cancer Research scimago Q1 wos Q2
2018-07-01 citations by CoLab: 52 Abstract  
Abstract In aggressive prostate cancers, the oncoprotein STMN1 (also known as stathmin 1 and oncoprotein 18) is often overexpressed. STMN1 is involved in various cellular processes, including cell proliferation, motility, and tumor metastasis. Here, it was found that the expression of STMN1 RNA and protein is elevated in metastatic prostate cancers. Knockdown of STMN1 resulted in reduced proliferation and invasion of cells and tumor growth and metastasis in vivo. Furthermore, miR-34a downregulated STMN1 by directly binding to its 3′-UTR. Overexpression of miR-34a in prostate cancer cells reduced proliferation and colony formation, suggesting that it is a tumor suppressor. The transcriptional corepressor C-terminal binding protein 1 (CtBP1) negatively regulated expression of miR-34a. Furthermore, gene expression profiling of STMN1-modulated prostate cancer cells revealed molecular alterations, including elevated expression of growth differentiation factor 15 (GDF15), which is involved in cancer progression and potentially in STMN1-mediated oncogenesis. Thus, in prostate cancer, CtBP1-regulated miR-34a modulates STMN1 expression and is involved in cancer progression through the CtBP1\miR-34a\STMN1\GDF15 axis. Implications: The CtBP1\miR-34a\STMN1\GDF15 axis is a potential therapeutic target for treatment of aggressive prostate cancer. Mol Cancer Res; 16(7); 1125–37. ©2017 AACR.
Liu L., Zhang Y., Wong C.C., Zhang J., Dong Y., Li X., Kang W., Chan F.K., Sung J.J., Yu J.
Cancer Research scimago Q1 wos Q1
2018-04-12 citations by CoLab: 72 Abstract  
Abstract Gene amplification is a hallmark of cancer and is frequently observed in colorectal cancer. Previous whole-genome sequencing of colorectal cancer clinical specimens identified amplification of Ring finger protein 6 (RNF6), a RING-domain E3 ubiquitin ligase. In this study, we showed that RNF6 is upregulated in 73.5% (147/200) of patients with colorectal cancer and was positively associated with RNF6 gene amplification. Furthermore, RNF6 expression and its gene amplification were independent prognostic factors for poor outcome of patients with colorectal cancer. RNF6 promoted cell growth, cell-cycle progression, and epithelial-to-mesenchymal transition in colorectal cancer cells; RNF6 also promoted colorectal tumor growth and lung metastasis in mouse models. Mechanistic investigations revealed that RNF6 bound and ubiquitylated transducin-like enhancer of split 3 (TLE3), a transcriptional repressor of the β-catenin/TCF4 complex. RNF6-mediated degradation of TLE3 significantly suppressed the association of TLE3 with TCF4/LEF, which in turn led to recruitment of β-catenin to TCF4/LEF, triggering Wnt/β-catenin activation. Restoration of TLE3 expression abolished the oncogenic effects of RNF6. Taken together, these results demonstrate that RNF6 plays a pivotal oncogenic role in colorectal tumorigenesis. Significance: RNF6-mediated ubiquitination and degradation of TLE3 activates the Wnt/β-catenin pathway in colorectal carcinogenesis. Cancer Res; 78(8); 1958–71. ©2018 AACR.
Burgenske D.M., Monsma D.J., MacKeigan J.P.
2018-03-26 citations by CoLab: 7 Abstract  
Preclinical compounds tested in animal models often demonstrate limited efficacy when transitioned into patients. As a result, individuals are assigned to treatment regimens that may be ineffective at treating their disease. The development of more clinically relevant models, such as patient-derived xenografts (PDXs), will (1) more completely mimic the human condition and (2) more accurately predict tumor responses to previously untested therapeutics. PDX models are clinically relevant as tumor tissue is implanted directly from human donor to the mouse recipient. Therefore, these models prevent cell population selection, intentional or unintentional, as the human tissue adapts to an in vitro, two-dimensional environment prior to implantation into a three-dimensional in vivo murine host. Often, cell heterogeneity and tumor architecture can be maintained from human to the PDX model in the mouse. This protocol describes the engraftment and propagation processes for establishing colorectal (CRC) PDX models in mice, using tumor tissue from human subjects.
Liu Q., Zhang H., Jiang X., Qian C., Liu Z., Luo D.
Molecular Cancer scimago Q1 wos Q1 Open Access
2017-12-02 citations by CoLab: 231 PDF Abstract  
Metastasis has intrigued researchers for more than 100 years. Despite the development of technologies and therapeutic strategies, metastasis is still the major cause of cancer-related death until today. The famous “seed and soil” hypothesis is widely cited and accepted, and it still provides significant instructions in cancer research until today. To our knowledge, there are few reviews that comprehensively and correlatively focus on both the seed and soil factors involved in cancer metastasis; moreover, despite the fact that increasingly underlying mechanisms and concepts have been defined recently, previous perspectives are appealing but may be limited. Hence, we reviewed factors involved in cancer metastasis, including both seed and soil factors. By integrating new concepts with the classic hypothesis, we aim to provide a comprehensive understanding of the “seed and soil” hypothesis and to conceptualize the framework for understanding factors involved in cancer metastasis. Based on a dynamic overview of this field, we also discuss potential implications for future research and clinical therapeutic strategies.
Dhamdhere S.G., Bansal A., Singh P., Kakani P., Agrawal S., Samaiya A., Shukla S.
Cell Death and Disease scimago Q1 wos Q1 Open Access
2025-02-27 citations by CoLab: 0 PDF Abstract  
Abstract Activating transcription factors (ATFs), members of the adaptive-response gene family, participate in cellular processes to aid adaptations in response to extra and/or intracellular changes. In this study, we observed that one of the ATFs, Activating transcription factor 3 (ATF3), is upregulated under hypoxia via alterations in the epigenetic landscape of its promoter, followed by transcriptional upregulation. Under hypoxic conditions, Hypoxia-inducible factor 1-alpha (HIF1ɑ) alleviates methylation at the ATF3 promoter by recruiting TET1 and induces ATF3 transcription. In addition, our RNA-seq analysis showed that ATF3 globally affects transcription under hypoxia and controls the processes of EMT and cancer invasion by stimulating the transcription of Prolyl 4-Hydroxylase Subunit Alpha 1 (P4HA1), an enzyme which enhances invasion-conducive extracellular matrix (ECM) under hypoxic conditions. Prolyl hydroxylases play a critical role in the hydroxylation and deposition of collagen in the extracellular matrix (ECM) during the evolution of cancer, which is necessary for metastasis. Importantly, P4HA1 undergoes alternative splicing under hypoxia, where the inclusion of exon 9a is increased. Interestingly, involvement of ATF3 in P4HA1 splicing was also evident, as binding of ATF3 at intron 9a led to demethylation of this DNA region via recruitment of TET1. Furthermore, we also show that the demethylated DNA region of intron 9a then becomes accessible to CCCTC-binding factor (CTCF). Thus, a cascade of demethylation via ATF3 recruited TET1, followed by increased RNA Pol II pause at intron 9a via CTCF, leads to inclusion of exon 9a. The P4HA1 9a isoform leads to enhanced invasion under hypoxic conditions by increasing deposition of collagen in the ECM. These results reveal a novel hypoxia-induced HIF1ɑ-ATF3-P4HA1 axis which can potentially be exploited as a therapeutic target to impede EMT and ultimately breast cancer invasion.
Li H., Hung H., Yu J., Liao Y., Lai M.
FEBS Journal scimago Q1 wos Q1
2024-12-22 citations by CoLab: 0 Abstract  
Hypoxia is a critical microenvironmental factor that induces tumorigenesis and cancer progression, including metastasis. The highly dynamic nature of the extracellular matrix (ECM) plays a crucial role in metastasis. Collagens are the predominant component of structural proteins embedded within the ECM. The biosynthesis of collagen typically undergoes a series of posttranslational modifications, such as hydroxylation of lysine and proline residues by procollagen‐lysine, 2‐oxoglutarate 5‐dioxygenases (PLODs) and prolyl 4‐hydroxylases (P4Hs), respectively. Collagen hydroxylation is critical for ECM remodeling and maintenance. We recently investigated hypoxia‐induced translation in human colon cancer HCT116 cells and identified several collagen‐modifying enzymes, including procollagen‐lysine, 2‐oxoglutarate 5‐dioxygenase 2 (PLOD2) and prolyl 4‐hydroxylase subunit alpha 1 (P4HA1). Although the translation of bulk mRNAs is repressed in hypoxia, specific mRNAs remain efficiently translated under such conditions. We have found that PLOD2 and P4HA1 are significantly upregulated in hypoxic HCT116 cells compared to normoxic cells. HIF‐1 is known to induce the transcription of PLOD2 and P4HA1 during hypoxia. However, the molecular mechanisms of hypoxia‐induced translation of PLOD2 and P4HA1 remain largely unclear. We provide evidence that RBM4 and eIF4E2 are required for hypoxia‐induced translation of PLOD2 and P4HA1 mRNAs. The 3′ UTRs of PLOD2 and P4HA1 mRNAs are involved in translational control during hypoxia in HCT116 cells.
Yang X., Zhang D., Li M., Shao Y., Zhang X., Xue Y.
Frontiers in Pharmacology scimago Q1 wos Q1 Open Access
2024-11-06 citations by CoLab: 0 PDF Abstract  
Fibrosis is significantly associated with a wide variety of diseases and is involved in their progression. Fibrosis activated under the influence of different combinations of factors is considered a double-edged sword. Although there has been much research on organ fibrosis in recent years, a variety of organ fibrosis diseases and cancers are not well controlled in terms of prevention, treatment, and prognosis. Clinical studies still lack exploration and discovery of effective targets for the pathogenesis of organ fibrosis. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1) is a protein kinase and the synthesis and secretion of collagen are related to the sustained activation of P4HA1. As further studies are being conducted, the potential role of P4HA1 in the development of fibrosis-associated diseases and cancer is becoming clear. Consequently, we conducted a systematic review and discussion on the role of P4HA1 in the pathogenesis of various fibrosis-related diseases and cancers. We reviewed the possible strategies of P4HA1 in the diagnosis and treatment of fibrosis-related diseases and cancers, and analyzed its potential relevance as a biomarker in the diagnosis and treatment of fibrosis-related diseases and cancer.
Tanaka A., Ogawa M., Zhou Y., Otani Y., Hendrickson R.C., Miele M.M., Li Z., Klimstra D.S., Wang J.Y., Roehrl M.H.
iScience scimago Q1 wos Q1 Open Access
2024-08-01 citations by CoLab: 1 Abstract  
Pancreatic neuroendocrine tumors (PanNETs) represent well-differentiated endocrine neoplasms with variable clinical outcomes. Predicting patient outcomes using the current tumor grading system is challenging. In addition, traditional systemic treatment options for PanNETs, such as somatostatin analogs or cytotoxic chemotherapies, are very limited. To address these issues, we characterized PanNETs using integrated proteogenomics and identified four subtypes. Two proteomic subtypes showed high recurrence rates, suggesting clinical aggressiveness that was missed by current classification. Hypoxia and inflammatory pathways were significantly enriched in the clinically aggressive subtypes. Detailed analyses revealed metabolic adaptation via glycolysis upregulation and oxidative phosphorylation downregulation under hypoxic conditions. Inflammatory signature analysis revealed that immunosuppressive molecules were enriched in immune hot tumors and might be immunotherapy targets. In this study, we characterized clinically aggressive proteomic subtypes of well-differentiated PanNETs and identified candidate therapeutic targets.
Dang X., Chen X., Liang Z., Dai Z., Ding W., Song J., Fu J.
Cancer Biology and Therapy scimago Q2 wos Q2 Open Access
2024-06-10 citations by CoLab: 2 PDF
Wu A., Schinderle J.D., Bochkis I.
2024-05-20 citations by CoLab: 0 Abstract  
AbstractMutations of nuclear lamina-associated proteins LMNA and ZMPSTE24 have been associated with fatty liver. We report that the changes at the nuclear envelope we described in MASLD patients are caused by downregulation of ZMPSTE24, an enzyme that processes prelamin to mature lamin A. In addition,Zmpste24mutant mice develop hepatic steatosis and exhibit upregulation of p53 target genes. p53 activity is also induced in genes differentially expressed in MASLD patients. Furthermore, p53 regulates genes bound by FOXA2 in these individuals, corresponding to observations inZmpste24mutants. In contrast, expression of glucose and insulin regulated genes is reduced in MASLD patients, suggesting altered glucose metabolism and insulin resistance, hallmarks of type 2 diabetes (T2D). Hence, our genomics data show that MASLD patients with severe steatosis but yet without MASH are already suffering from severe metabolic consequences and underscore the need for treatment at this stage of the disease.
Borst R., Meyaard L., Pascoal Ramos M.I.
2024-04-24 citations by CoLab: 10 PDF Abstract  
AbstractTumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Tanaka A., Ogawa M., Zhou Y., Namba K., Hendrickson R.C., Miele M.M., Li Z., Klimstra D.S., Buckley P.G., Gulcher J., Wang J.Y., Roehrl M.H.
Cell Reports scimago Q1 wos Q1 Open Access
2024-02-19 citations by CoLab: 7 Abstract  
Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases. Unsupervised mass spectrometry-based proteomics of 135 primary and 123 metastatic CRCs uncovered distinct proteomic subtypes, three each for primary and metastatic CRCs, respectively. Integrated analyses revealed that hypoxia, stemness, and immune signatures characterize these 6 subtypes. Hypoxic CRC harbors high epithelial-to-mesenchymal transition features and metabolic adaptation. CRC with a stemness signature shows high oncogenic pathway activation and alternative telomere lengthening (ALT) phenotype, especially in metastatic lesions. Tumor microenvironment analysis shows immune evasion via modulation of major histocompatibility complex (MHC) class I/II and antigen processing pathways. This study characterizes both primary and metastatic CRCs and provides a large proteogenomics dataset of metastatic progression.
Gou W., Song B., Yang Y.
Medicine (United States) scimago Q3 wos Q2 Open Access
2023-12-22 citations by CoLab: 1 Abstract  
This study aimed to explore the effect of P4HA1 (prolyl 4-hydroxylase subunit α1) and its ratio on the prognosis of esophageal squamous cell carcinoma. The expression data of P4HA1 in esophageal cancer in The Cancer Genome Atlas and Genotype-Tissue Expression were collected using the public database gene expression profiling interactive analysis. The expression levels of P4HA1 were examined by immunohistochemistry. The relationship between P4HA1 expression and clinicopathological parameters was analyzed the χ2 test. Survival analysis was performed to investigate the effect of P4HA1 and its ratio on prognosis. Compared with normal esophageal mucosal epithelium, there was higher P4HA1 gene mRNA in esophageal cancer tissue. Regarding the expression level, no significant difference was observed in patients with stage I–IV esophageal cancer. Immunohistochemistry showed that P4HA1 was highly expressed in esophageal squamous cell carcinoma (68.7%), while it was negatively expressed in paracancerous tissues. There was a significant difference in expression between cancer and adjacent tissues. The expression of P4HA1 associated with the degree of tumor differentiation, site, lymph node metastasis, and tumor node metastasis stage. The prognostic factors that affected the OS (overall survival) of esophageal cancer patients were the degree of differentiation, lymph node metastasis, and P4HA1 expression. Multivariate analysis of the OS results of patients showed that lymph node metastases and P4HA1 expression were independent prognostic factors that affected the OS of esophageal cancer patients. The prognostic factors affecting the PFS (progression-free survival) of esophageal cancer patients in the univariate survival analysis were as follows: degree of differentiation, lymph node metastasis, and P4HA1 expression. In addition, multivariate analysis of the PFS results of patients showed that lymph node metastasis and P4HA1 expression were independent prognostic factors that affected the PFS of esophageal cancer patients. P4HA1 may be a novel potential biomarker for the early diagnosis, prognosis, and targeted therapy of esophageal cancer.
Zhou Y., Tian J., Zhu Y., Zhang Y., Zhao X.
2023-09-04 citations by CoLab: 4 Abstract  
It has been reported that prolyl 4-hydroxylase subunit alpha 1 (P4HA1) promoted tumor growth and metastasis of glioma; thus, targeting P4HA1 may be a promising therapeutic strategy against glioma. In consideration of the instability of siRNA in vivo, the chitosan–gelatin microspheres loaded with P4HA1 siRNA (P4HA1 siRNA@CGM) were employed. Firstly, the gel electrophoresis and hemolytic test were performed to assess the stability and blood compatibility of P4HA1 siRNA@CGM. Then, methyl thiazolyl tetrazolium (MTT), cell colony formation, Transwell assay, wound healing assay, gliosphere formation, tube formation, and Western blot were performed to assess the effects of P4HA1 siRNA@CGM on the biological functions of glioma. Finally, 125I-labeled P4HA1 siRNA@CGM was injected into the xenograft mice, radionuclide imaging was recorded, Ki67 and terminal deoxynucleoitidyl transferase–mediated nick end labeling (TUNEL) staining was performed to assess the effects of P4HA1 siRNA@CGM on tumor growth and apoptosis of glioma in vivo. The results showed that P4HA1 siRNA and P4HA1 siRNA@CGM not only markedly inhibited the proliferation, metastasis, gliosphere formation, and the protein levels of interstitial markers (N-cadherin and vimentin) and the transcription factors of epithelial–mesenchymal transition (EMT) (Snail, Slug, and Twist1) in glioma cells, but also inhibited the tube formation in human brain microvascular endothelial cells (HBMECs), and P4HA1 siRNA@CGM exhibited the better inhibitory effects than P4HA1 siRNA. Above results suggested the feasibility of P4HA1 siRNA@CGM in the clinical treatment of glioma.
Ye C., Huang Y., Gao Y., Zhu S., Yuan J.
2023-07-10 citations by CoLab: 3 Abstract  
AbstractPatients with inflammatory bowel disease (IBD) have a higher risk of developing colorectal cancer (CRC). Glycolysis is involved in the development of both IBD and CRC. However, the mechanisms and outcomes of glycolysis shared between IBD and CRC remain unclear. This study aimed to explore the glycolytic cross-talk genes between IBD and CRC integrating bioinformatics and machine learning. With WGCNA, LASSO, COX, and SVM-RFE algorithms, P4HA1 and PMM2 were identified as glycolytic cross-talk genes. The independent risk signature of P4HA1 and PMM2 was constructed to predict the overall survival rate of patients with CRC. The risk signature correlated with clinical characteristics, prognosis, tumor microenvironment, immune checkpoint, mutants, cancer stemness, and chemotherapeutic drug sensitivity. CRC patients with high risk have increased microsatellite instability, tumor mutation burden. The nomogram integrating risk score, tumor stage, and age showed high accuracy for predicting overall survival rate. In addition, the diagnostic model for IBD based on P4HA1 and PMM2 showed excellent accuracy. Finally, immunohistochemistry results showed that P4HA1 and PMM2 were significantly upregulated in IBD and CRC. Our study reveals the presence of glycolytic cross-talk genes P4HA1 and PMM2 between IBD and CRC. This may prove to be beneficial in advancing research on the mechanism of development of IBD-associated CRC.
Cao X., Cao Y., Zhao H., Wang P., Zhu Z.
2023-07-01 citations by CoLab: 10 Abstract  
Introduction: Cancer stem cells (CSCs) are profoundly implicated in tumor initiation and progression as well as drug resistance and tumor recurrence of many cancer types, especially pancreatic ductal adenocarcinoma (PDAC). Previously, we revealed that prolyl 4-hydroxylase subunit alpha 1 (P4HA1) enhances the Warburg effect and tumor growth in PDAC. However, the possible connection between P4HA1 and cancer stemness in PDAC remains obscure. In this study, P4HA1-dependent cancer stemness was studied by sphere-formation assay and detection of stemness markers. Methods: Glycolytic capacity in cancer stem cells and their parental tumor cells was investigated by glucose uptake, lactate secretion, and expression of glycolytic genes. Glycolysis inhibitors were used to determine the link between cancer stemness and glycolysis. A subcutaneous xenograft model was generated to investigate P4HA1-induced stemness and glycolysis in vivo. Results and Discussion: We revealed that ectopic expression of P4HA1 increased the stemness of PDAC cells as evidenced by the increased proportion of CD133+ cells, elevated sphere-formation ability, and the up-regulated levels of cancer stemness-related proteins (SOX2, OCT4, and NANOG). Blocking tumor glycolysis with 2-Deoxy-D-glucose (2-DG) or a selective inhibitor of glucose transporter 1 (STF-31) significantly reduced the stem properties of PDAC cells, suggesting that P4HA1-induced glycolysis was essential for the stem-like phenotype of PDAC cells. In addition, in vivo study reaffirmed a promotive effect of P4HA1 on tumor glycolysis and cancer stemness. Conclusion: Collectively, our findings suggest that P4HA1 not only affects tumor metabolic reprogramming but also facilitates cancer stemness, which might be exploited as a vulnerable target for PDAC treatment.
Neto Í., Rocha J., Gaspar M.M., Reis C.P.
Cancers scimago Q1 wos Q1 Open Access
2023-04-30 citations by CoLab: 10 PDF Abstract  
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Arolt C., Hoffmann F., Nachtsheim L., Mayer M., Guntinas‐Lichius O., Buettner R., von Eggeling F., Klussmann J.P., Hillmer A., Quaas A., Klein S., Wolber P.
Journal of Pathology scimago Q1 wos Q1
2023-02-22 citations by CoLab: 0
Baldari S., Di Modugno F., Nisticò P., Toietta G.
Cancers scimago Q1 wos Q1 Open Access
2022-09-27 citations by CoLab: 23 PDF Abstract  
The tumor stroma, which comprises stromal cells and non-cellular elements, is a critical component of the tumor microenvironment (TME). The dynamic interactions between the tumor cells and the stroma may promote tumor progression and metastasis and dictate resistance to established cancer therapies. Therefore, novel antitumor approaches should combine anticancer and anti-stroma strategies targeting dysregulated tumor extracellular matrix (ECM). ECM remodeling is a hallmark of solid tumors, leading to extensive biochemical and biomechanical changes, affecting cell signaling and tumor tissue three-dimensional architecture. Increased deposition of fibrillar collagen is the most distinctive alteration of the tumor ECM. Consequently, several anticancer therapeutic strategies have been developed to reduce excessive tumor collagen deposition. Herein, we provide an overview of the current advances and challenges of the main approaches aiming at tumor collagen normalization, which include targeted anticancer drug delivery, promotion of degradation, modulation of structure and biosynthesis of collagen, and targeting cancer-associated fibroblasts, which are the major extracellular matrix producers.

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
6
7
1
2
3
4
5
6
7
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?