Unveiling built environment impacts on traffic CO2 emissions using Geo-CNN weighted regression
4
Key Laboratory of Intelligent Transportation Technology and System, Ministry of Education, Beijing 100191, China
|
Тип публикации: Journal Article
Дата публикации: 2024-07-01
scimago Q1
wos Q1
БС1
SJR: 2.301
CiteScore: 14.2
Impact factor: 7.7
ISSN: 13619209, 18792340
Краткое описание
Understanding the associations between the built environment and road traffic CO2 emissions is crucial for developing strategies to mitigate carbon emissions. However, previous research struggled to capture complex spatial relationships accurately due to classical geospatial models' limitations and the challenges of estimating CO2 emissions from operational vehicle data or limited sample sizes. Therefore, we introduce a novel model that leverages extensive vehicle trajectory data for estimating road traffic CO2 emissions. Furthermore, we develop a geographically convolutional neural network weighted regression (GCNNWR) model to analyze the correlation between the built environment and these emissions. This model employs convolutional neural networks to effectively capture non-linear spatial relationships. An empirical analysis was conducted in Beijing, China, demonstrating the superiority of the GCNNWR model in accommodating spatial heterogeneity compared to conventional geospatial models. Our findings provide critical insights into optimizing the built environment to minimize CO2 emissions.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
7
|
|
|
Renewable Energy
7 публикаций, 20%
|
|
|
Transportation Research, Part E: Logistics and Transportation Review
4 публикации, 11.43%
|
|
|
Transportation Research, Part D: Transport and Environment
2 публикации, 5.71%
|
|
|
IET Intelligent Transport Systems
2 публикации, 5.71%
|
|
|
Sustainable Cities and Society
2 публикации, 5.71%
|
|
|
Physica A: Statistical Mechanics and its Applications
1 публикация, 2.86%
|
|
|
IEEE Transactions on Intelligent Transportation Systems
1 публикация, 2.86%
|
|
|
Travel Behaviour and Society
1 публикация, 2.86%
|
|
|
Research in Transportation Economics
1 публикация, 2.86%
|
|
|
Journal of Environmental Management
1 публикация, 2.86%
|
|
|
Transportation Research Part C: Emerging Technologies
1 публикация, 2.86%
|
|
|
Remote Sensing
1 публикация, 2.86%
|
|
|
Expert Systems with Applications
1 публикация, 2.86%
|
|
|
Micromachines
1 публикация, 2.86%
|
|
|
Computers and Industrial Engineering
1 публикация, 2.86%
|
|
|
Carbon Footprints
1 публикация, 2.86%
|
|
|
IEEE Transactions on Transportation Electrification
1 публикация, 2.86%
|
|
|
Mathematics
1 публикация, 2.86%
|
|
|
Journal of Renewable and Sustainable Energy
1 публикация, 2.86%
|
|
|
Transport Policy
1 публикация, 2.86%
|
|
|
Cities
1 публикация, 2.86%
|
|
|
Sustainability
1 публикация, 2.86%
|
|
|
1
2
3
4
5
6
7
|
Издатели
|
5
10
15
20
25
|
|
|
Elsevier
24 публикации, 68.57%
|
|
|
MDPI
4 публикации, 11.43%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 8.57%
|
|
|
Institution of Engineering and Technology (IET)
2 публикации, 5.71%
|
|
|
OAE Publishing Inc.
1 публикация, 2.86%
|
|
|
AIP Publishing
1 публикация, 2.86%
|
|
|
5
10
15
20
25
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
35
Всего цитирований:
35
Цитирований c 2024:
34
(97.14%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Liu B. et al. Unveiling built environment impacts on traffic CO2 emissions using Geo-CNN weighted regression // Transportation Research, Part D: Transport and Environment. 2024. Vol. 132. p. 104266.
ГОСТ со всеми авторами (до 50)
Скопировать
Liu B., Li F., Hou Y., Biancardo S. A., Ma X. Unveiling built environment impacts on traffic CO2 emissions using Geo-CNN weighted regression // Transportation Research, Part D: Transport and Environment. 2024. Vol. 132. p. 104266.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.trd.2024.104266
UR - https://linkinghub.elsevier.com/retrieve/pii/S1361920924002232
TI - Unveiling built environment impacts on traffic CO2 emissions using Geo-CNN weighted regression
T2 - Transportation Research, Part D: Transport and Environment
AU - Liu, Bing
AU - Li, Feng
AU - Hou, Yue
AU - Biancardo, Salvatore Antonio
AU - Ma, Xiao-Lei
PY - 2024
DA - 2024/07/01
PB - Elsevier
SP - 104266
VL - 132
SN - 1361-9209
SN - 1879-2340
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Liu,
author = {Bing Liu and Feng Li and Yue Hou and Salvatore Antonio Biancardo and Xiao-Lei Ma},
title = {Unveiling built environment impacts on traffic CO2 emissions using Geo-CNN weighted regression},
journal = {Transportation Research, Part D: Transport and Environment},
year = {2024},
volume = {132},
publisher = {Elsevier},
month = {jul},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1361920924002232},
pages = {104266},
doi = {10.1016/j.trd.2024.104266}
}