том 269 издание 2 страницы 507-516

Monoterpene biosynthesis: Mechanistic evaluation of the geranyl pyrophosphate:(−)-endo-fenchol cyclase from fennel (Foeniculum vulgare)

Тип публикацииJournal Article
Дата публикации1989-03-01
scimago Q1
wos Q2
БС1
SJR0.912
CiteScore6.4
Impact factor3.0
ISSN00039861, 10960384
Biochemistry
Molecular Biology
Biophysics
Краткое описание
Geranyl pyrophosphate:(-)-endo-fenchol cyclase catalyzes the conversion of geranyl pyrophosphate to (-)-endo-fenchol by a process thought to involve the initial isomerization of the substrate to the tertiary allylic isomer, linalyl pyrophosphate, and the subsequent cyclization of this bound intermediate. Studies with 18O-labeled acyclic precursors and H2(18)O, followed by mass spectrometric analysis of the cyclic product, confirmed that water was the sole source of the carbinol oxygen atom of endo-fenchol, thus indicating the participation of the solvent in terminating this presumptive carbocationic reaction. The isomerization component of the normally coupled reaction sequence was demonstrated directly using the substrate analog 2,3-cyclopropylgeranyl pyrosphosphate and by isolating the corresponding homoallylic analog of linalyl pyrophosphate as a major reaction product. The cyclization component of the reaction sequence was effectively dissected using linalyl pyrophosphate as substrate, and both isomerization and cyclization steps were shown to take place at the same active site of the cyclase, an observation consistent with the efficient coupling of these processes. 2-Fluorogeranyl pyrophosphate and 2-fluorolinalyl pyrophosphate were shown to be effective inhibitors of the cyclase, and the electron-withdrawing substituent was shown to greatly suppress the rate of cyclization of these labeled analogs, indicating that both steps of the coupled isomerization-cyclization sequence are initiated by ionization of an allylic pyrophosphate. Additional evidence for the electrophilic nature of the reaction was obtained by demonstrating the ability of the cyclase to solvolyze other substrate analogs which bear an allylic pyrophosphate, and by showing that cyclization was strongly inhibited by sulfonium analogs of presumptive carbocationic intermediates of the reaction sequence, especially in the presence of inorganic pyrophosphate as counterion. In spite of the fact that the fenchol cyclase terminates the cyclization with an external nucleophile (H2O), the primary mechanistic features of this isomerization-cyclization reaction are similar to those catalyzed by other cyclases that terminate the reaction by deprotonation or cation capture by the pyrophosphate moiety of the substrate.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
Archives of Biochemistry and Biophysics
6 публикаций, 30%
Phytochemistry
2 публикации, 10%
Enzyme and Microbial Technology
1 публикация, 5%
ACS Catalysis
1 публикация, 5%
Natural Product Reports
1 публикация, 5%
Pharmaceutical Biology
1 публикация, 5%
Progress in Botany
1 публикация, 5%
Advances in Biochemical Engineering/Biotechnology
1 публикация, 5%
Plant Journal
1 публикация, 5%
1
2
3
4
5
6

Издатели

1
2
3
4
5
6
7
8
9
Elsevier
9 публикаций, 45%
Springer Nature
2 публикации, 10%
American Chemical Society (ACS)
1 публикация, 5%
Royal Society of Chemistry (RSC)
1 публикация, 5%
Taylor & Francis
1 публикация, 5%
Wiley
1 публикация, 5%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
CROTEAU R., Miyazaki J. H., Wheeler C. J. Monoterpene biosynthesis: Mechanistic evaluation of the geranyl pyrophosphate:(−)-endo-fenchol cyclase from fennel (Foeniculum vulgare) // Archives of Biochemistry and Biophysics. 1989. Vol. 269. No. 2. pp. 507-516.
ГОСТ со всеми авторами (до 50) Скопировать
CROTEAU R., Miyazaki J. H., Wheeler C. J. Monoterpene biosynthesis: Mechanistic evaluation of the geranyl pyrophosphate:(−)-endo-fenchol cyclase from fennel (Foeniculum vulgare) // Archives of Biochemistry and Biophysics. 1989. Vol. 269. No. 2. pp. 507-516.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/0003-9861(89)90134-3
UR - https://doi.org/10.1016/0003-9861(89)90134-3
TI - Monoterpene biosynthesis: Mechanistic evaluation of the geranyl pyrophosphate:(−)-endo-fenchol cyclase from fennel (Foeniculum vulgare)
T2 - Archives of Biochemistry and Biophysics
AU - CROTEAU, RODNEY
AU - Miyazaki, John H
AU - Wheeler, Carl J.
PY - 1989
DA - 1989/03/01
PB - Elsevier
SP - 507-516
IS - 2
VL - 269
PMID - 2919880
SN - 0003-9861
SN - 1096-0384
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{1989_CROTEAU,
author = {RODNEY CROTEAU and John H Miyazaki and Carl J. Wheeler},
title = {Monoterpene biosynthesis: Mechanistic evaluation of the geranyl pyrophosphate:(−)-endo-fenchol cyclase from fennel (Foeniculum vulgare)},
journal = {Archives of Biochemistry and Biophysics},
year = {1989},
volume = {269},
publisher = {Elsevier},
month = {mar},
url = {https://doi.org/10.1016/0003-9861(89)90134-3},
number = {2},
pages = {507--516},
doi = {10.1016/0003-9861(89)90134-3}
}
MLA
Цитировать
CROTEAU, RODNEY, et al. “Monoterpene biosynthesis: Mechanistic evaluation of the geranyl pyrophosphate:(−)-endo-fenchol cyclase from fennel (Foeniculum vulgare).” Archives of Biochemistry and Biophysics, vol. 269, no. 2, Mar. 1989, pp. 507-516. https://doi.org/10.1016/0003-9861(89)90134-3.