Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions
Тип публикации: Journal Article
Дата публикации: 2018-06-07
scimago Q1
wos Q2
БС2
SJR: 1.112
CiteScore: 6.0
Impact factor: 3.1
ISSN: 00063495, 15420086
PubMed ID:
29874600
Biophysics
Краткое описание
Small-angle x-ray scattering (SAXS) of biological macromolecules in solutions is a widely employed method in structural biology. SAXS patterns include information about the overall shape and low-resolution structure of dissolved particles. Here, we describe how to transform experimental SAXS patterns to feature vectors and how a simple k-nearest neighbor approach is able to retrieve information on overall particle shape and maximal diameter (Dmax) as well as molecular mass directly from experimental scattering data. Based on this transformation, we develop a rapid multiclass shape-classification ranging from compact, extended, and flat categories to hollow and random-chain-like objects. This classification may be employed, e.g., as a decision block in automated data analysis pipelines. Further, we map protein structures from the Protein Data Bank into the classification space and, in a second step, use this mapping as a data source to obtain accurate estimates for the structural parameters (Dmax, molecular mass) of the macromolecule under study based on the experimental scattering pattern alone, without inverse Fourier transform for Dmax. All methods presented are implemented in a Fortran binary DATCLASS, part of the ATSAS data analysis suite, available on Linux, Mac, and Windows and free for academic use.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
|
|
|
Journal of Applied Crystallography
6 публикаций, 6.38%
|
|
|
Structure
4 публикации, 4.26%
|
|
|
Nucleic Acids Research
3 публикации, 3.19%
|
|
|
Digital Discovery
3 публикации, 3.19%
|
|
|
IUCrJ
2 публикации, 2.13%
|
|
|
Biomolecules
2 публикации, 2.13%
|
|
|
Nature Communications
2 публикации, 2.13%
|
|
|
Journal of Molecular Biology
2 публикации, 2.13%
|
|
|
Biochemistry
2 публикации, 2.13%
|
|
|
International Journal of Biological Macromolecules
2 публикации, 2.13%
|
|
|
Acta Crystallographica Section A: Foundations and Advances
2 публикации, 2.13%
|
|
|
Chemistry of Materials
1 публикация, 1.06%
|
|
|
Chemical Physics Reviews
1 публикация, 1.06%
|
|
|
Materials
1 публикация, 1.06%
|
|
|
Crystals
1 публикация, 1.06%
|
|
|
Molecules
1 публикация, 1.06%
|
|
|
Processes
1 публикация, 1.06%
|
|
|
Pharmaceutics
1 публикация, 1.06%
|
|
|
Frontiers in Molecular Biosciences
1 публикация, 1.06%
|
|
|
Frontiers in Materials
1 публикация, 1.06%
|
|
|
Frontiers in Cell and Developmental Biology
1 публикация, 1.06%
|
|
|
Frontiers in Nutrition
1 публикация, 1.06%
|
|
|
Nature Reviews Methods Primers
1 публикация, 1.06%
|
|
|
Materials and Design
1 публикация, 1.06%
|
|
|
Scientific Reports
1 публикация, 1.06%
|
|
|
MRS Advances
1 публикация, 1.06%
|
|
|
Journal of Drug Delivery Science and Technology
1 публикация, 1.06%
|
|
|
Journal of Biological Chemistry
1 публикация, 1.06%
|
|
|
Computational Materials Science
1 публикация, 1.06%
|
|
|
1
2
3
4
5
6
|
Издатели
|
5
10
15
20
25
|
|
|
Elsevier
24 публикации, 25.53%
|
|
|
International Union of Crystallography (IUCr)
10 публикаций, 10.64%
|
|
|
Cold Spring Harbor Laboratory
9 публикаций, 9.57%
|
|
|
MDPI
8 публикаций, 8.51%
|
|
|
Springer Nature
8 публикаций, 8.51%
|
|
|
American Chemical Society (ACS)
7 публикаций, 7.45%
|
|
|
Royal Society of Chemistry (RSC)
5 публикаций, 5.32%
|
|
|
Frontiers Media S.A.
4 публикации, 4.26%
|
|
|
Wiley
4 публикации, 4.26%
|
|
|
Oxford University Press
4 публикации, 4.26%
|
|
|
AIP Publishing
2 публикации, 2.13%
|
|
|
Pleiades Publishing
2 публикации, 2.13%
|
|
|
American Society for Biochemistry and Molecular Biology
1 публикация, 1.06%
|
|
|
IOP Publishing
1 публикация, 1.06%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 1.06%
|
|
|
American Association for the Advancement of Science (AAAS)
1 публикация, 1.06%
|
|
|
SAGE
1 публикация, 1.06%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.06%
|
|
|
Kalvis
1 публикация, 1.06%
|
|
|
5
10
15
20
25
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
94
Всего цитирований:
94
Цитирований c 2025:
14
(14.89%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Franke D., Jeffries C. M., Svergun D. Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions // Biophysical Journal. 2018. Vol. 114. No. 11. pp. 2485-2492.
ГОСТ со всеми авторами (до 50)
Скопировать
Franke D., Jeffries C. M., Svergun D. Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions // Biophysical Journal. 2018. Vol. 114. No. 11. pp. 2485-2492.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.bpj.2018.04.018
UR - https://doi.org/10.1016/j.bpj.2018.04.018
TI - Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions
T2 - Biophysical Journal
AU - Franke, Daniel
AU - Jeffries, Cy M.
AU - Svergun, Dmitri
PY - 2018
DA - 2018/06/07
PB - Elsevier
SP - 2485-2492
IS - 11
VL - 114
PMID - 29874600
SN - 0006-3495
SN - 1542-0086
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2018_Franke,
author = {Daniel Franke and Cy M. Jeffries and Dmitri Svergun},
title = {Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions},
journal = {Biophysical Journal},
year = {2018},
volume = {114},
publisher = {Elsevier},
month = {jun},
url = {https://doi.org/10.1016/j.bpj.2018.04.018},
number = {11},
pages = {2485--2492},
doi = {10.1016/j.bpj.2018.04.018}
}
Цитировать
MLA
Скопировать
Franke, Daniel, et al. “Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions.” Biophysical Journal, vol. 114, no. 11, Jun. 2018, pp. 2485-2492. https://doi.org/10.1016/j.bpj.2018.04.018.