Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study

N.D.Orekhov, J.V.Bondareva, D.O.Potapov, P.V.Dyakonov, O.N.Dubinin, M.A.Tarkhov, G.D.Diudbin, K.I.Maslakov, M.A.Logunov, D.G.Kvashnin, S.A.Evlashin
Тип документаJournal Article
Дата публикации2022-02-19
Название журналаCarbon
ИздательElsevier
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 202111.31
ISSN00086223
General Chemistry
General Materials Science
Пристатейные ссылки: 76
Цитируется в публикациях: 2
Evolution of layer distance and structural arrangement of graphene oxide with various oxygen content and functional types in low temperature: A ReaxFF molecular dynamics simulation
Bu Y., Li K., Xiong Z., Liang Z., Zhang J., Bi Z., Zhang H.
Q1 Applied Surface Science 2022 цитирований: 2
High-temperature oxidation of carbon fiber and char by molecular dynamics simulation
Shi L., Sessim M., Tonks M.R., Phillpot S.R.
Q1 Carbon 2021 цитирований: 1
Robust and Flexible Optically Active 2D Membranes Based on Encapsulation of Liquid Crystals in Graphene Oxide Pockets
Chen M., Goh S.M., Yang K., Nikitina A.A., Chen S., Leng X., Karim N., Hanson L., Gleeson H.F., Novoselov K.S., Andreeva D.V.
Q1 Advanced Materials Interfaces 2021 цитирований: 1
Graphitization of low-density amorphous carbon for electrocatalysis electrodes from ReaxFF reactive dynamics
Hossain M.D., Zhang Q., Cheng T., Goddard W.A., Luo Z.
Q1 Carbon 2021 цитирований: 2
Molecular dynamics simulation of evolution of nanostructures and functional groups in glassy carbon under pyrolysis
Montgomery-Walsh R., Nimbalkar S., Bunnell J., Galindo S.L., Kassegne S.
Q1 Carbon 2021 цитирований: 1
The role of oxidation level in mass-transport properties and dehumidification performance of graphene oxide membranes
Chernova E.A., Petukhov D.I., Chumakov A.P., Kirianova A.V., Sadilov I.S., Kapitanova O.O., Boytsova O.V., Valeev R.G., Roth S.V., Eliseev A.A., Eliseev A.A.
Q1 Carbon 2021 цитирований: 5
Localized Surface Plasmon Enhanced Laser Reduction of Graphene Oxide for Wearable Strain Sensor
Wan Z., Wang S., Haylock B., Wu Z., Nguyen T., Phan H., Sang R., Nguyen N., Thiel D., Koulakov S., Trinchi A., Gao Y., Lobino M., Li Q.
Q1 Advanced Materials Technologies 2021 цитирований: 2
Laser scribed graphene for supercapacitors
Wan Z., Chen X., Gu M.
Q1 Opto-Electronic Advances 2021 цитирований: 8
High temperature pure carbon nanoparticle formation: Validation of AIREBO and ReaxFF reactive molecular dynamics
Orekhov N., Ostroumova G., Stegailov V.
Q1 Carbon 2020 цитирований: 16
Pyrolysis mechanisms of graphene oxide revealed by ReaxFF molecular dynamics simulation
Yang Z., Sun Y., Ma F., Lu Y., Zhao T.
Q1 Applied Surface Science 2020 цитирований: 15
Search for stable cocrystals of energetic materials using the evolutionary algorithm USPEX.
Pakhnova M., Kruglov I., Yanilkin A., Oganov A.R.
Q1 Physical Chemistry Chemical Physics 2020 цитирований: 12
Reduced graphene oxide today
Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I.
Q1 Journal of Materials Chemistry C 2020 цитирований: 112
Understanding and Predicting the Cause of Defects in Graphene Oxide Nanostructures Using Machine Learning
Motevalli B., Sun B., Barnard A.S.
Q1 Journal of Physical Chemistry C 2020 цитирований: 16
Comparative study of melting of graphite and graphene
Fomin Y.D., Brazhkin V.V.
Q1 Carbon 2020 цитирований: 16
Transferability in interatomic potentials for carbon
de Tomas C., Aghajamali A., Jones J.L., Lim D.J., López M.J., Suarez-Martinez I., Marks N.A.
Q1 Carbon 2019 цитирований: 24
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Orekhov N. D. и др. Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study // Carbon. 2022. Т. 191. С. 546–554.
RIS |
Цитировать

TY - JOUR

DO - 10.1016/j.carbon.2022.02.018

UR - http://dx.doi.org/10.1016/j.carbon.2022.02.018

TI - Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study

T2 - Carbon

AU - Orekhov, N.D.

AU - Bondareva, J.V.

AU - Potapov, D.O.

AU - Dyakonov, P.V.

AU - Dubinin, O.N.

AU - Tarkhov, M.A.

AU - Diudbin, G.D.

AU - Maslakov, K.I.

AU - Logunov, M.A.

AU - Kvashnin, D.G.

AU - Evlashin, S.A.

PY - 2022

DA - 2022/05

PB - Elsevier BV

SP - 546-554

VL - 191

SN - 0008-6223

ER -

BibTex |
Цитировать

@article{Orekhov_2022,

doi = {10.1016/j.carbon.2022.02.018},

url = {https://doi.org/10.1016%2Fj.carbon.2022.02.018},

year = 2022,

month = {may},

publisher = {Elsevier {BV}},

volume = {191},

pages = {546--554},

author = {N.D. Orekhov and J.V. Bondareva and D.O. Potapov and P.V. Dyakonov and O.N. Dubinin and M.A. Tarkhov and G.D. Diudbin and K.I. Maslakov and M.A. Logunov and D.G. Kvashnin and S.A. Evlashin},

title = {Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and {ReaxFF} study},

journal = {Carbon}

}

MLA
Цитировать
Orekhov, N. D., et al. “Mechanism of Graphene Oxide Laser Reduction at Ambient Conditions: Experimental and ReaxFF Study.” Carbon, vol. 191, May 2022, pp. 546–54. Crossref, https://doi.org/10.1016/j.carbon.2022.02.018.