Carbon, издание 191, страницы 546-554
Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study
Orekhov Nikita D.
1, 2, 3
,
Bondareva J V
4
,
Potapov D O
2, 3
,
Dyakonov P.V.
4
,
Dubinin Oleg N.
4, 5
,
Tarkhov M. A.
6
,
Diudbin G D
6
,
Logunov M A
2, 3
,
Kvashnin D G
8
,
1
Тип публикации: Journal Article
Дата публикации: 2022-05-01

Elsevier
Журнал:
Carbon
Квартиль SCImago: Q1
Квартиль WOS: Q1
Impact factor: 10.9
ISSN: 00086223
General Chemistry
General Materials Science
Краткое описание
Search for a cheap and efficient route of graphene fabrication is still far from its conclusion, and reduction of graphene oxide (GO) is considered one of the most promising ways to achieve this goal. Here we perform combined experimental and computational analysis of a simple yet efficient and environment-friendly method for reducing GO using nanosecond infrared laser irradiation, which can be performed under ambient conditions and does not require an inert atmosphere or vacuum. We demonstrate that ultrafast heating up to 3800 K leads to a fascinating regime of high quality GO reduction even in the presence of atmospheric air. This surprising effect is achieved as an interplay between two seemingly opposite processes: combustion on the highly-defective areas of GO, such as grain boundaries, and defect annealing in its bulk part. As a result, under particular pulse regimes, after a small loss of mass (primarily from its edges), GO transforms into rGO with a high local order and low Raman I(D)/I(G) ratio.
Цитирования по журналам
1
|
|
Carbon
![]() |
![]() Carbon
1 публикация, 8.33%
|
Combustion and Flame
![]() |
![]() Combustion and Flame
1 публикация, 8.33%
|
JETP Letters
![]() |
![]() JETP Letters
1 публикация, 8.33%
|
ACS Nano
![]() |
![]() ACS Nano
1 публикация, 8.33%
|
ACS Omega
![]() |
![]() ACS Omega
1 публикация, 8.33%
|
ACS Applied Nano Materials
![]() |
![]() ACS Applied Nano Materials
1 публикация, 8.33%
|
C – Journal of Carbon Research
![]() |
![]() C – Journal of Carbon Research
1 публикация, 8.33%
|
Vacuum
![]() |
![]() Vacuum
1 публикация, 8.33%
|
Sensors
![]() |
![]() Sensors
1 публикация, 8.33%
|
Advanced Materials Interfaces
![]() |
![]() Advanced Materials Interfaces
1 публикация, 8.33%
|
Journal of Physical Chemistry C
![]() |
![]() Journal of Physical Chemistry C
1 публикация, 8.33%
|
Journal of Molecular Liquids
![]() |
![]() Journal of Molecular Liquids
1 публикация, 8.33%
|
1
|
Цитирования по издателям
1
2
3
4
|
|
Elsevier
![]() |
![]() Elsevier
4 публикации, 33.33%
|
American Chemical Society (ACS)
![]() |
![]() American Chemical Society (ACS)
4 публикации, 33.33%
|
Multidisciplinary Digital Publishing Institute (MDPI)
![]() |
![]() Multidisciplinary Digital Publishing Institute (MDPI)
2 публикации, 16.67%
|
Pleiades Publishing
![]() |
![]() Pleiades Publishing
1 публикация, 8.33%
|
Wiley
![]() |
![]() Wiley
1 публикация, 8.33%
|
1
2
3
4
|
- Мы не учитываем публикации, у которых нет DOI.
- Мы обновляем статистику только для публикаций, связанных с профилями, лабораториями и организациями.
- Статистика публикаций обновляется еженедельно.
{"yearsCitations":{"type":"bar","data":{"show":true,"labels":[2022,2023],"ids":[0,0],"codes":[0,0],"imageUrls":["",""],"datasets":[{"label":"\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e \u0446\u0438\u0442\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0439","data":[3,9],"backgroundColor":["#3B82F6","#3B82F6"],"percentage":["25","75"],"barThickness":null}]},"options":{"indexAxis":"x","maintainAspectRatio":true,"scales":{"y":{"ticks":{"precision":0,"autoSkip":false,"font":{"family":"Montserrat"},"color":"#000000"}},"x":{"ticks":{"stepSize":1,"precision":0,"font":{"family":"Montserrat"},"color":"#000000"}}},"plugins":{"legend":{"position":"top","labels":{"font":{"family":"Montserrat"},"color":"#000000"}},"title":{"display":true,"text":"\u0426\u0438\u0442\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0439 \u0432 \u0433\u043e\u0434","font":{"size":24,"family":"Montserrat","weight":600},"color":"#000000"}}}},"journals":{"type":"bar","data":{"show":true,"labels":["Carbon","Combustion and Flame","JETP Letters","ACS Nano","ACS Omega","ACS Applied Nano Materials","C \u2013 Journal of Carbon Research","Vacuum","Sensors","Advanced Materials Interfaces","Journal of Physical Chemistry C","Journal of Molecular Liquids"],"ids":[37,7608,5735,8724,18901,1600,26427,11149,18435,18764,8859,13597],"codes":[0,0,0,0,0,0,0,0,0,0,0,0],"imageUrls":["\/storage\/images\/resized\/GDnYOu1UpMMfMMRV6Aqle4H0YLLsraeD9IP9qScG_medium.webp","\/storage\/images\/resized\/GDnYOu1UpMMfMMRV6Aqle4H0YLLsraeD9IP9qScG_medium.webp","\/storage\/images\/resized\/oZgeErrVFhuDksyqFURLvYS1wtVSBWczh001igGo_medium.webp","\/storage\/images\/resized\/iLiQsFqFaSEx6chlGQ5fbAwF6VYU3WWa08hkss0g_medium.webp","\/storage\/images\/resized\/iLiQsFqFaSEx6chlGQ5fbAwF6VYU3WWa08hkss0g_medium.webp","\/storage\/images\/resized\/iLiQsFqFaSEx6chlGQ5fbAwF6VYU3WWa08hkss0g_medium.webp","\/storage\/images\/resized\/MjH1ITP7lMYGxeqUZfkt2BnVLgjkk413jwBV97XX_medium.webp","\/storage\/images\/resized\/GDnYOu1UpMMfMMRV6Aqle4H0YLLsraeD9IP9qScG_medium.webp","\/storage\/images\/resized\/MjH1ITP7lMYGxeqUZfkt2BnVLgjkk413jwBV97XX_medium.webp","\/storage\/images\/resized\/bRyGpdm98BkAUYiK1YFNpl5Z7hPu6Gd87gbIeuG3_medium.webp","\/storage\/images\/resized\/iLiQsFqFaSEx6chlGQ5fbAwF6VYU3WWa08hkss0g_medium.webp","\/storage\/images\/resized\/GDnYOu1UpMMfMMRV6Aqle4H0YLLsraeD9IP9qScG_medium.webp"],"datasets":[{"label":"","data":[1,1,1,1,1,1,1,1,1,1,1,1],"backgroundColor":["#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6"],"percentage":[8.33,8.33,8.33,8.33,8.33,8.33,8.33,8.33,8.33,8.33,8.33,8.33],"barThickness":13}]},"options":{"indexAxis":"y","maintainAspectRatio":false,"scales":{"y":{"ticks":{"precision":0,"autoSkip":false,"font":{"family":"Montserrat"},"color":"#000000"}},"x":{"ticks":{"stepSize":null,"precision":0,"font":{"family":"Montserrat"},"color":"#000000"}}},"plugins":{"legend":{"position":"top","labels":{"font":{"family":"Montserrat"},"color":"#000000"}},"title":{"display":true,"text":"\u0416\u0443\u0440\u043d\u0430\u043b\u044b","font":{"size":24,"family":"Montserrat","weight":600},"color":"#000000"}}}},"publishers":{"type":"bar","data":{"show":true,"labels":["Elsevier","American Chemical Society (ACS)","Multidisciplinary Digital Publishing Institute (MDPI)","Pleiades Publishing","Wiley"],"ids":[17,40,202,101,11],"codes":[0,0,0,0,0],"imageUrls":["\/storage\/images\/resized\/GDnYOu1UpMMfMMRV6Aqle4H0YLLsraeD9IP9qScG_medium.webp","\/storage\/images\/resized\/iLiQsFqFaSEx6chlGQ5fbAwF6VYU3WWa08hkss0g_medium.webp","\/storage\/images\/resized\/MjH1ITP7lMYGxeqUZfkt2BnVLgjkk413jwBV97XX_medium.webp","\/storage\/images\/resized\/oZgeErrVFhuDksyqFURLvYS1wtVSBWczh001igGo_medium.webp","\/storage\/images\/resized\/bRyGpdm98BkAUYiK1YFNpl5Z7hPu6Gd87gbIeuG3_medium.webp"],"datasets":[{"label":"","data":[4,4,2,1,1],"backgroundColor":["#3B82F6","#3B82F6","#3B82F6","#3B82F6","#3B82F6"],"percentage":[33.33,33.33,16.67,8.33,8.33],"barThickness":13}]},"options":{"indexAxis":"y","maintainAspectRatio":false,"scales":{"y":{"ticks":{"precision":0,"autoSkip":false,"font":{"family":"Montserrat"},"color":"#000000"}},"x":{"ticks":{"stepSize":null,"precision":0,"font":{"family":"Montserrat"},"color":"#000000"}}},"plugins":{"legend":{"position":"top","labels":{"font":{"family":"Montserrat"},"color":"#000000"}},"title":{"display":true,"text":"\u0418\u0437\u0434\u0430\u0442\u0435\u043b\u0438","font":{"size":24,"family":"Montserrat","weight":600},"color":"#000000"}}}}}
Метрики
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Orekhov N. D. et al. Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study // Carbon. 2022. Vol. 191. pp. 546-554.
ГОСТ со всеми авторами (до 50)
Скопировать
Orekhov N. D., Bondareva J. V., Potapov D. O., Dyakonov P., Dubinin O. N., Tarkhov M. A., Diudbin G. D., Maslakov K., Logunov M. A., Kvashnin D. G., Evlashin S. Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study // Carbon. 2022. Vol. 191. pp. 546-554.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.carbon.2022.02.018
UR - https://doi.org/10.1016/j.carbon.2022.02.018
TI - Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study
T2 - Carbon
AU - Orekhov, Nikita D.
AU - Bondareva, J V
AU - Potapov, D O
AU - Dyakonov, P.V.
AU - Dubinin, Oleg N.
AU - Tarkhov, M. A.
AU - Diudbin, G D
AU - Maslakov, Konstantin
AU - Logunov, M A
AU - Kvashnin, D G
AU - Evlashin, Stanislav
PY - 2022
DA - 2022/05/01 00:00:00
PB - Elsevier
SP - 546-554
VL - 191
SN - 0008-6223
ER -
Цитировать
BibTex
Скопировать
@article{2022_Orekhov
author = {Nikita D. Orekhov and J V Bondareva and D O Potapov and P.V. Dyakonov and Oleg N. Dubinin and M. A. Tarkhov and G D Diudbin and Konstantin Maslakov and M A Logunov and D G Kvashnin and Stanislav Evlashin},
title = {Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study},
journal = {Carbon},
year = {2022},
volume = {191},
publisher = {Elsevier},
month = {may},
url = {https://doi.org/10.1016/j.carbon.2022.02.018},
pages = {546--554},
doi = {10.1016/j.carbon.2022.02.018}
}
Цитировать
MLA
Скопировать
Orekhov, N. D., et al. “Mechanism of Graphene Oxide Laser Reduction at Ambient Conditions: Experimental and ReaxFF Study.” Carbon, vol. 191, May 2022, pp. 546–54. Crossref, https://doi.org/10.1016/j.carbon.2022.02.018.