Learning to predict sustainable aviation fuel properties: A deep uncertainty quantification viewpoint
2
Federal Aviation Administration, Washington DC 20591, USA
|
Тип публикации: Journal Article
Дата публикации: 2024-01-01
scimago Q1
wos Q1
БС1
SJR: 1.614
CiteScore: 14.2
Impact factor: 7.5
ISSN: 00162361, 18737153
Organic Chemistry
General Chemical Engineering
Energy Engineering and Power Technology
Fuel Technology
Краткое описание
Machine/deep learning (DL) predictions of sustainable aviation fuel’s (SAF) physiochemical properties from chemical data offers a rapid way to prescreen the potential viability of new SAF candidates but is limited by uncertainties. In this article, the uncertainties arising from insufficient training data (epistemic) and finite-resolution chemical features (heteroscedastic) are addressed by conducting a deep uncertainty quantification (UQ) study using a Bayesian neural network ensemble (BNNE) to model and analyze such uncertainties. In particular, flash point is predicted from two-dimensional gas chromatography (GC×GC) features in various scenarios where differences in epistemicity and heteroscedasticity exist. Several insights are obtained: (1) Overparameterization of the network provides buffer against epistemicity and should be advocated in the absence of sufficient data. (2) Reducing the epistemic uncertainty via GC×GC localization does not always improve accuracy, highlighting the necessity of a probabilistic formulation to prevent overconfident but erroneous predictions. (3) Heteroscedastic uncertainty is larger and irreducible for lower resolution features, e.g., GC separated by chemical family but not molecular formulae. These findings aim not only to facilitate trustworthy DL practices in SAF modeling but also to emphasize the importance of establishing a big data pipeline and the design of finer features (e.g., isomer differentiation via vacuum ultraviolet spectroscopy) to mitigate these uncertainties.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Energy & Fuels
2 публикации, 22.22%
|
|
|
Data Science and Management
1 публикация, 11.11%
|
|
|
Engineering Applications of Artificial Intelligence
1 публикация, 11.11%
|
|
|
Sustainable Energy Technologies and Assessments
1 публикация, 11.11%
|
|
|
Russian Chemical Reviews
1 публикация, 11.11%
|
|
|
Energy Conversion and Management: X
1 публикация, 11.11%
|
|
|
Fuel
1 публикация, 11.11%
|
|
|
1
2
|
Издатели
|
1
2
3
4
5
6
|
|
|
Elsevier
6 публикаций, 66.67%
|
|
|
American Chemical Society (ACS)
2 публикации, 22.22%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 11.11%
|
|
|
1
2
3
4
5
6
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
9
Всего цитирований:
9
Цитирований c 2024:
8
(88.89%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Oh J. et al. Learning to predict sustainable aviation fuel properties: A deep uncertainty quantification viewpoint // Fuel. 2024. Vol. 356. p. 129508.
ГОСТ со всеми авторами (до 50)
Скопировать
Oh J., Oldani A., Solecki A., Lee T. Learning to predict sustainable aviation fuel properties: A deep uncertainty quantification viewpoint // Fuel. 2024. Vol. 356. p. 129508.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.fuel.2023.129508
UR - https://doi.org/10.1016/j.fuel.2023.129508
TI - Learning to predict sustainable aviation fuel properties: A deep uncertainty quantification viewpoint
T2 - Fuel
AU - Oh, Ji-Hun
AU - Oldani, Anna
AU - Solecki, Alex
AU - Lee, T.
PY - 2024
DA - 2024/01/01
PB - Elsevier
SP - 129508
VL - 356
SN - 0016-2361
SN - 1873-7153
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Oh,
author = {Ji-Hun Oh and Anna Oldani and Alex Solecki and T. Lee},
title = {Learning to predict sustainable aviation fuel properties: A deep uncertainty quantification viewpoint},
journal = {Fuel},
year = {2024},
volume = {356},
publisher = {Elsevier},
month = {jan},
url = {https://doi.org/10.1016/j.fuel.2023.129508},
pages = {129508},
doi = {10.1016/j.fuel.2023.129508}
}