том 126 страницы 103194

Bubble patterns recognition using neural networks: Application to the analysis of a two-phase bubbly jet

Тип публикацииJournal Article
Дата публикации2020-05-01
scimago Q1
wos Q1
БС1
SJR0.930
CiteScore7.0
Impact factor3.8
ISSN03019322, 18793533
General Physics and Astronomy
Mechanical Engineering
Fluid Flow and Transfer Processes
Краткое описание
• Ready-to-use neural networks powered software was developed. • Software can precisely detect bubbles in images with a wide range of the gas content. • Software is automated and can be used for different experiments with bubbly jets. • The obtained results are in good agreement with the given experiment parameters. • Overall experiment analysis time decreased by ~6–8 times compared to the old approach. Gas-liquid two-phase bubbly flows are found in different areas of science and technology such as nuclear energy, chemical industry, or piping systems. Optical diagnostics of two-phase bubbly flows with modern panoramic techniques makes it possible to capture simultaneously instantaneous characteristics of both continuous and dispersed phases with a high spatial resolution. In this paper, we introduce a novel approach based on neural networks to recognize bubble patterns in images and identify their geometric parameters. The originality of the proposed method consists in training of a neural network ensemble using synthetic images that resemble real photographs gathered in experiment. The use of neural networks in combination with automatically generated data allowed us to detect overlapping, blurred, and non-spherical bubbles in a broad range of volume gas fractions. Experiments on a turbulent bubbly jet proved that the implemented method increases the identification accuracy, reducing errors of various kinds, and lowers the processing time compared to conventional recognition methods. Furthermore, utilizing the new method of bubbles recognition, the primary physical parameters of a dispersed phase, such as bubble size distribution and local gas content, were calculated in a near-to-nozzle region of the bubbly jet. The obtained results and integral experimental parameters, especially volume gas fraction, are in good agreement with each other.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
International Journal of Multiphase Flow
13 публикаций, 15.29%
Physics of Fluids
7 публикаций, 8.24%
Chemical Engineering Science
6 публикаций, 7.06%
Chemical Engineering Journal
4 публикации, 4.71%
Industrial & Engineering Chemistry Research
4 публикации, 4.71%
Energies
2 публикации, 2.35%
Measurement: Journal of the International Measurement Confederation
2 публикации, 2.35%
Experimental Thermal and Fluid Science
2 публикации, 2.35%
Flow Measurement and Instrumentation
2 публикации, 2.35%
Energy and AI
2 публикации, 2.35%
Journal of Physics: Conference Series
1 публикация, 1.18%
Measurement Science and Technology
1 публикация, 1.18%
Biomicrofluidics
1 публикация, 1.18%
Physical Review E
1 публикация, 1.18%
Micromachines
1 публикация, 1.18%
Nanomaterials
1 публикация, 1.18%
Water (Switzerland)
1 публикация, 1.18%
Catalysts
1 публикация, 1.18%
Scientific Reports
1 публикация, 1.18%
Experiments in Fluids
1 публикация, 1.18%
Microelectronic Engineering
1 публикация, 1.18%
Minerals Engineering
1 публикация, 1.18%
Journal of Natural Gas Science and Engineering
1 публикация, 1.18%
Computers and Chemical Engineering
1 публикация, 1.18%
Machine Learning with Applications
1 публикация, 1.18%
Materials Today: Proceedings
1 публикация, 1.18%
Chemie-Ingenieur-Technik
1 публикация, 1.18%
Digital Discovery
1 публикация, 1.18%
Nanoscale
1 публикация, 1.18%
2
4
6
8
10
12
14

Издатели

5
10
15
20
25
30
35
40
45
Elsevier
45 публикаций, 52.94%
MDPI
10 публикаций, 11.76%
AIP Publishing
8 публикаций, 9.41%
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 5.88%
American Chemical Society (ACS)
5 публикаций, 5.88%
IOP Publishing
2 публикации, 2.35%
Springer Nature
2 публикации, 2.35%
Royal Society of Chemistry (RSC)
2 публикации, 2.35%
American Physical Society (APS)
1 публикация, 1.18%
Wiley
1 публикация, 1.18%
Taylor & Francis
1 публикация, 1.18%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.18%
The Electrochemical Society of Japan
1 публикация, 1.18%
5
10
15
20
25
30
35
40
45
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
85
Поделиться
Цитировать
ГОСТ |
Цитировать
Poletaev I. et al. Bubble patterns recognition using neural networks: Application to the analysis of a two-phase bubbly jet // International Journal of Multiphase Flow. 2020. Vol. 126. p. 103194.
ГОСТ со всеми авторами (до 50) Скопировать
Poletaev I., Tokarev M. P., Pervunin K. S. Bubble patterns recognition using neural networks: Application to the analysis of a two-phase bubbly jet // International Journal of Multiphase Flow. 2020. Vol. 126. p. 103194.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.ijmultiphaseflow.2019.103194
UR - https://doi.org/10.1016/j.ijmultiphaseflow.2019.103194
TI - Bubble patterns recognition using neural networks: Application to the analysis of a two-phase bubbly jet
T2 - International Journal of Multiphase Flow
AU - Poletaev, Igor
AU - Tokarev, Mikhail P
AU - Pervunin, Konstantin S.
PY - 2020
DA - 2020/05/01
PB - Elsevier
SP - 103194
VL - 126
SN - 0301-9322
SN - 1879-3533
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Poletaev,
author = {Igor Poletaev and Mikhail P Tokarev and Konstantin S. Pervunin},
title = {Bubble patterns recognition using neural networks: Application to the analysis of a two-phase bubbly jet},
journal = {International Journal of Multiphase Flow},
year = {2020},
volume = {126},
publisher = {Elsevier},
month = {may},
url = {https://doi.org/10.1016/j.ijmultiphaseflow.2019.103194},
pages = {103194},
doi = {10.1016/j.ijmultiphaseflow.2019.103194}
}