Journal of Power Sources, volume 464, pages 228158

Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors

William Arnold
Dominika A Buchberger 2, 3
Yang Li
Yang Li 2
Mahendra Sunkara
Mahendra K. Sunkara 2
Thad Druffel
Thad Druffel 2
Hui Wang 1
1
 
Mechanical Engineering Department, University of Louisville, 332 Eastern Pkwy, Louisville, KY, 40292, USA
2
 
Conn Center for Renewable Energy Research, University of Louisville, 216 Eastern Pkwy, Louisville, KY, 40208, USA
Publication typeJournal Article
Publication date2020-07-01
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor9.2
ISSN03787753
Physical and Theoretical Chemistry
Electrical and Electronic Engineering
Energy Engineering and Power Technology
Renewable Energy, Sustainability and the Environment
Abstract
Halide-doped lithium argyrodites (Li6PS5X, X = Cl, Br or I) are one class of the most promising solid electrolyte candidates for solid-state Li batteries. However, similar to other superionic conductors, Li6PS5X argyrodites are mostly synthezied through high temperature solid-state reactions. Herein, we employ a solvent-based method to synthesize Li6PS5X argyrodites and study the halide doping (type and concentration) effect on their structure and properties. Using ethanol as the solvent medium, Li6PS5X and Li6PS5Cl·xLiCl (0 ≤ x ≤ 2) materials with precise composition control were achieved. The liquid-synthesized Li6PS5Cl showed the best ionic conductivity of 0.34 mS cm−1 at room temperature, followed by Li6PS5Br, with Li6PS5I being the worst. Interestingly, excess Cl content further increased the ionic conductivity of Li6PS5Cl·LiCl up to 0.53 mS cm−1 at room temperature and 5 mS cm−1 at 90 °C. In addition, the Li4Ti5O12/Li cell with Li6PS5Cl·LiCl solid electrolyte exhibited higher specific capacity (135 mAh g−1) than that of Li6PS5Cl-based cell (110 mAh g−1) at 0.2C. These results highlight a solvent-based synthesis method with precise composition control to study the halogen ion's effect on the structure and properties of lithium argyrodites, which would promote the development of lithium argyrodite solid electrolytes for applications in all-solid-state Li batteries.

Top-30

Citations by journals

1
2
3
ACS applied materials & interfaces
3 publications, 5.56%
Journal of Materials Chemistry A
3 publications, 5.56%
Energy Storage Materials
3 publications, 5.56%
ACS Energy Letters
3 publications, 5.56%
Journal of Power Sources
2 publications, 3.7%
Scripta Materialia
2 publications, 3.7%
Solid State Ionics
2 publications, 3.7%
Electrochimica Acta
2 publications, 3.7%
Zeitschrift fur Physikalische Chemie
2 publications, 3.7%
Nano Letters
1 publication, 1.85%
Advanced Sustainable Systems
1 publication, 1.85%
Functional Materials Letters
1 publication, 1.85%
Nanomaterials
1 publication, 1.85%
Nature Communications
1 publication, 1.85%
Materials Today Physics
1 publication, 1.85%
Progress in Energy
1 publication, 1.85%
Molecules
1 publication, 1.85%
Journal of Alloys and Compounds
1 publication, 1.85%
SSRN Electronic Journal
1 publication, 1.85%
Materials Today Communications
1 publication, 1.85%
Batteries & Supercaps
1 publication, 1.85%
Journal of the American Ceramic Society
1 publication, 1.85%
Small
1 publication, 1.85%
International Journal of Energy Research
1 publication, 1.85%
Chemistry of Materials
1 publication, 1.85%
Membranes
1 publication, 1.85%
Industrial & Engineering Chemistry Research
1 publication, 1.85%
Open Engineering
1 publication, 1.85%
Journal of Physical Chemistry C
1 publication, 1.85%
1
2
3

Citations by publishers

2
4
6
8
10
12
14
Elsevier
14 publications, 25.93%
American Chemical Society (ACS)
12 publications, 22.22%
Wiley
6 publications, 11.11%
Springer Nature
5 publications, 9.26%
Royal Society of Chemistry (RSC)
4 publications, 7.41%
Multidisciplinary Digital Publishing Institute (MDPI)
3 publications, 5.56%
Walter de Gruyter
3 publications, 5.56%
World Scientific
1 publication, 1.85%
IOP Publishing
1 publication, 1.85%
Social Science Electronic Publishing
1 publication, 1.85%
The Electrochemical Society
1 publication, 1.85%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 1.85%
2
4
6
8
10
12
14
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Arnold W. et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors // Journal of Power Sources. 2020. Vol. 464. p. 228158.
GOST all authors (up to 50) Copy
Arnold W., Arnold W. A., Buchberger D. A., Li Y., Li Y., Sunkara M., Sunkara M. K., Druffel T., Druffel T., Wang H., Wang H. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors // Journal of Power Sources. 2020. Vol. 464. p. 228158.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.jpowsour.2020.228158
UR - https://doi.org/10.1016/j.jpowsour.2020.228158
TI - Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors
T2 - Journal of Power Sources
AU - Arnold, William
AU - Buchberger, Dominika A
AU - Li, Yang
AU - Sunkara, Mahendra
AU - Druffel, Thad
AU - Wang, Hui
AU - Arnold, William A.
AU - Li, Yang
AU - Sunkara, Mahendra K.
AU - Druffel, Thad
AU - Wang, Hui
PY - 2020
DA - 2020/07/01 00:00:00
PB - Elsevier
SP - 228158
VL - 464
SN - 0378-7753
ER -
BibTex
Cite this
BibTex Copy
@article{2020_Arnold,
author = {William Arnold and Dominika A Buchberger and Yang Li and Mahendra Sunkara and Thad Druffel and Hui Wang and William A. Arnold and Yang Li and Mahendra K. Sunkara and Thad Druffel and Hui Wang},
title = {Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors},
journal = {Journal of Power Sources},
year = {2020},
volume = {464},
publisher = {Elsevier},
month = {jul},
url = {https://doi.org/10.1016/j.jpowsour.2020.228158},
pages = {228158},
doi = {10.1016/j.jpowsour.2020.228158}
}
Found error?