Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells
Haijuan Zhang
1
,
Hui Wu
1, 2
,
Ze Wang
3
,
M.-Q. Li
3
,
Haolan Xi
3
,
Yonghao Zheng
3
,
Xiaodong Liu
3
Тип публикации: Journal Article
Дата публикации: 2022-12-01
scimago Q1
wos Q1
БС1
SJR: 2.116
CiteScore: 16.7
Impact factor: 8.6
ISSN: 24686069
Materials Science (miscellaneous)
Energy Engineering and Power Technology
Fuel Technology
Nuclear Energy and Engineering
Renewable Energy, Sustainability and the Environment
Краткое описание
Poly(N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine) (PTPD) is an appropriate hole transporting material (HTM) in perovskite solar cells (PSCs) due to its simple fabrication process. However, the relatively low conductivity of PTPD compared with traditional inorganic HTMs limits its application in highly efficient PSCs. Here, we employ an ultraviolet (UV)-light induced H + doping strategy to improve the conductivity of PTPD hole transporting layer (HTL) for high-performance n-i-p planar structure PSCs. The released proton (H + ) from 4-isopropyl-4’-methyldiphenyliodonium tetrakis-(pentafluorophenyl-borate) (DPI-TPFB) induced by UV-light irradiation can coordinate with PTPD to form PTPD-NH + , which dramatically enhances the hole carrier transport and extraction. As a result, a champion power conversion efficiency (PCE) of 21.38% is achieved in PSCs with H + doped PTPD as HTL, which is much higher than that (17.63%) of the PSCs with pristine PTPD HTL. Furthermore, the stability of the PSCs in humid air is significantly improved after adopting H + doped PTPD to replace pristine PTPD, owing to the increased hydrophobicity of PTPD HTL. • A UV-induced H + doping strategy is developed to improve the conductivity of PTPD. • The conductivity and hole extraction efficiency are extremely improved. • A champion PCE of 21.38% is achieved by this doping strategy.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
ACS applied materials & interfaces
3 публикации, 50%
|
|
|
Russian Chemical Reviews
1 публикация, 16.67%
|
|
|
ACS Applied Electronic Materials
1 публикация, 16.67%
|
|
|
Journal of Semiconductors
1 публикация, 16.67%
|
|
|
1
2
3
|
Издатели
|
1
2
3
4
|
|
|
American Chemical Society (ACS)
4 публикации, 66.67%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 16.67%
|
|
|
IOP Publishing
1 публикация, 16.67%
|
|
|
1
2
3
4
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Всего цитирований:
6
Цитирований c 2024:
6
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Zhang H. et al. Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells // Materials Today Energy. 2022. Vol. 30. p. 101159.
ГОСТ со всеми авторами (до 50)
Скопировать
Zhang H., Wu H., Wang Z., Li M., Xi H., Zheng Y., Liu X. Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells // Materials Today Energy. 2022. Vol. 30. p. 101159.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.mtener.2022.101159
UR - https://doi.org/10.1016/j.mtener.2022.101159
TI - Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells
T2 - Materials Today Energy
AU - Zhang, Haijuan
AU - Wu, Hui
AU - Wang, Ze
AU - Li, M.-Q.
AU - Xi, Haolan
AU - Zheng, Yonghao
AU - Liu, Xiaodong
PY - 2022
DA - 2022/12/01
PB - Elsevier
SP - 101159
VL - 30
SN - 2468-6069
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Zhang,
author = {Haijuan Zhang and Hui Wu and Ze Wang and M.-Q. Li and Haolan Xi and Yonghao Zheng and Xiaodong Liu},
title = {Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells},
journal = {Materials Today Energy},
year = {2022},
volume = {30},
publisher = {Elsevier},
month = {dec},
url = {https://doi.org/10.1016/j.mtener.2022.101159},
pages = {101159},
doi = {10.1016/j.mtener.2022.101159}
}