Open Access
Open access
volume 6 issue Suppl 2 pages 100313

Artificial Intelligence Applied to Forced Spirometry in Primary Care

Rosaly Moreno Mendez 1
Rosaly Moreno Mendez 1
Antonio Marín 2
José Ramon Ferrando 3
Giuliana Rissi 4
Giuliana Rissi Castro 4
Sonia Cepeda Madrigal 4
Gabriela Agostini 5
Pablo Catalan Serra 4, 6
Pablo Catalan Serra 6
1
 
Pneumology Department. Arnau de Vilanova Hospital, Valencia, Spain, Current address: Helse Møre Romsdal Kristiansund Hospital, Norway
2
 
Data Science in Energy. CEO. Av. Eduardo Dato, 22, 41018 Seville, Spain
3
 
Pneumology Department. La Ribera Hospital, Alzira, Valencia, Spain
4
 
Pneumology Department. Vila-Real Hospital, La Plana, Castellón, Spain
5
 
Otolaryngology Department. Vida Clinic, Santa Cruz de Tenerife, Spain
Publication typeJournal Article
Publication date2024-10-01
scimago Q4
SJR0.239
CiteScore1.1
Impact factor
ISSN26596636
Abstract
Introduction: This study aims to create an Artificial Intelligence (AI) based machine learning (ML) model capable of predicting a spirometric obstructive pattern using variables with the highest predictive power derived from an active case-finding program for COPD in primary care. Material and methods: A total of 1190 smokers, aged 30 to 80 years old with no prior history of respiratory disease, underwent spirometry with bronchodilation. The sample was analyzed using AI tools. Based on an Exploratory Data Analysis (EDA), independent variables (according to mutual information analysis) were trained using a gradient boosting algorithm (GBT) and validated through cross-validation. Results: with an area under the curve close to unity, the model predicted a spirometric obstructive pattern using variables with the highest predictive power: FEV1_theoretical_pre values. Sensitivity: 93%. Positive predictive value: 94%. Specificity: 97%. Negative predictive value: 96%. Accuracy: 95%. Precision: 94%. Conclusion: An ML model can predict the presence of an obstructive pattern in spirometry in a primary care smoking population with no prior diagnosis of respiratory disease using the FEV1_theoretical_pre values with an accuracy and precision exceeding 90%. Further studies including clinical data and strategies for integrating AI into clinical workflow are needed. Introducción: Este estudio tiene como objetivo crear un modelo de aprendizaje automático (ML) basado en inteligencia artificial (IA) capaz de predecir un patrón obstructivo espirométrico utilizando variables con el mayor poder predictivo derivado de un programa activo de búsqueda de casos de EPOC en atención primaria. Materiales y métodos: Un total de 1.190 fumadores, de entre 30 y 80 años, sin antecedentes de enfermedad respiratoria, fueron sometidos a espirometría con broncodilatación. La muestra se analizó utilizando herramientas de inteligencia artificial. Sobre la base de un análisis de datos exploratorio (EDA), las variables independientes (según el análisis de información mutua) se entrenaron utilizando un algoritmo de aumento de gradiente (GBT) y se validaron mediante validación cruzada. Resultados: con un área bajo la curva cercana a la unidad, el modelo predijo un patrón obstructivo espirométrico utilizando los valores del FEV1 prebroncodilatador. Sensibilidad: 93%. Valor predictivo positivo: 94%. Especificidad: 97%. Valor predictivo negativo: 96%. Precisión: 95%. Precisión: 94%. Conclusión: Un modelo ML puede predecir la presencia de un patrón obstructivo en la espirometría en una población fumadora de atención primaria sin diagnóstico previo de enfermedad respiratoria utilizando los valores FEV1 prebroncodilatadores con una exactitud y precisión superiores al 90%. Se necesitan más estudios que incluyan datos clínicos y estrategias para integrar la IA en el flujo de trabajo clínico.
Found 
Found 

Top-30

Journals

1
Respirology
1 publication, 25%
Cureus
1 publication, 25%
1

Publishers

1
2
SPIE-Intl Soc Optical Eng
2 publications, 50%
Wiley
1 publication, 25%
Springer Nature
1 publication, 25%
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
4
Share
Cite this
GOST |
Cite this
GOST Copy
Mendez R. M. et al. Artificial Intelligence Applied to Forced Spirometry in Primary Care // Open Respiratory Archives. 2024. Vol. 6. No. Suppl 2. p. 100313.
GOST all authors (up to 50) Copy
Mendez R. M., Moreno Mendez R., Marín A., Ferrando J. R., Rissi G., Rissi Castro G., Cepeda Madrigal S., Agostini G., Catalan Serra P., Serra P. C. Artificial Intelligence Applied to Forced Spirometry in Primary Care // Open Respiratory Archives. 2024. Vol. 6. No. Suppl 2. p. 100313.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.opresp.2024.100313
UR - https://linkinghub.elsevier.com/retrieve/pii/S265966362400016X
TI - Artificial Intelligence Applied to Forced Spirometry in Primary Care
T2 - Open Respiratory Archives
AU - Mendez, Rosaly Moreno
AU - Moreno Mendez, Rosaly
AU - Marín, Antonio
AU - Ferrando, José Ramon
AU - Rissi, Giuliana
AU - Rissi Castro, Giuliana
AU - Cepeda Madrigal, Sonia
AU - Agostini, Gabriela
AU - Catalan Serra, Pablo
AU - Serra, Pablo Catalan
PY - 2024
DA - 2024/10/01
PB - Elsevier
SP - 100313
IS - Suppl 2
VL - 6
PMID - 38828405
SN - 2659-6636
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Mendez,
author = {Rosaly Moreno Mendez and Rosaly Moreno Mendez and Antonio Marín and José Ramon Ferrando and Giuliana Rissi and Giuliana Rissi Castro and Sonia Cepeda Madrigal and Gabriela Agostini and Pablo Catalan Serra and Pablo Catalan Serra},
title = {Artificial Intelligence Applied to Forced Spirometry in Primary Care},
journal = {Open Respiratory Archives},
year = {2024},
volume = {6},
publisher = {Elsevier},
month = {oct},
url = {https://linkinghub.elsevier.com/retrieve/pii/S265966362400016X},
number = {Suppl 2},
pages = {100313},
doi = {10.1016/j.opresp.2024.100313}
}
MLA
Cite this
MLA Copy
Mendez, Rosaly Moreno, et al. “Artificial Intelligence Applied to Forced Spirometry in Primary Care.” Open Respiratory Archives, vol. 6, no. Suppl 2, Oct. 2024, p. 100313. https://linkinghub.elsevier.com/retrieve/pii/S265966362400016X.