Open Access
Open access
Petroleum Science, volume 21, issue 6, pages 4248-4261

Three-dimensional fracture space characterization and conductivity evolution analysis of induced un-propped fractures in shale gas reservoirs

Publication typeJournal Article
Publication date2024-12-01
scimago Q1
SJR1.141
CiteScore7.7
Impact factor6
ISSN16725107, 19958226
Abstract
Huge numbers of induced unpropped (IU) fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs. But it is still unclear how their fracture space and conductivity evolve under in-situ conditions. This paper prepares three types of samples, namely, manually split vertical/parallel to beddings (MSV, MSP) and parallel natural fractures (NFP), to represent the varied IU fractures as well as their surface morphology. Laser scan and reconstruction demonstrate that the initial fracture spaces of MSVs and MSPs are limited as the asperities of newly created surfaces are well-matched, and the NFPs have bigger space due to inhomogeneous geological corrosion. Surface slippage and consequent asperity mismatch increase the fracture width by several times, and the increase is proportional to surface roughness. Under stressful conditions, the slipped MSVs retain the smallest residual space and conductivity due to the newly sharp asperities. Controlled by the bedding structures and clay mineral hydrations, the conductivity of MSPs decreases most after treated with a fracturing fluid. The NFPs remain the highest conductivity, benefitting from their dispersive, gentle, and strong asperities. The results reveal the diverse evolution trends of IU fractures and can provide reliable parameters for fracturing design, post-fracturing evaluation, and productivity forecasting.
Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?