том 32 страницы 100457

Recent trends and techniques of blood glucose level prediction for diabetes control

Тип публикацииJournal Article
Дата публикации2024-06-01
scimago Q2
БС1
SJR0.612
CiteScore7.7
Impact factor
ISSN23526483
Medicine (miscellaneous)
Computer Science Applications
Information Systems
Health Informatics
Health Information Management
Краткое описание
Diabetes, a metabolic disorder disease, can cause short-term acute or even long-term chronic complications in a patient's body. In 2021, 10.5% of the world's adult population had diabetes. These numbers are increasing day by day, which results in an associated increase of morbidity, mortality, and health care cost related to diabetes. Thus, a huge research effort has been carried out to manage diabetes. A precursor to diabetes management is to predict the future blood glucose levels based on a patient's past history. In this paper, we provide a comprehensive and systematic study of diabetes management, focusing on recent research towards blood glucose level prediction. In particular, we have categorized and presented existing recent research based on major clinical application domains, different input features, and major modeling techniques including physiological, data-driven, and hybrid models. We have summarized the performance analysis of different modeling techniques using different metrics, and critically analyzed these techniques from different perspectives. Finally, we have identified a number of research challenges and potential future works that range from data collection to model improvement for Type 2 Diabetes Mellitus. This review can be a good starting point for researchers and practitioners who are working in building data-driven computational models for diabetes management and blood glucose level prediction.
Найдено 
Найдено 

Топ-30

Журналы

1
Gels
1 публикация, 5.56%
BMC Health Services Research
1 публикация, 5.56%
Electronics (Switzerland)
1 публикация, 5.56%
Russian Chemical Reviews
1 публикация, 5.56%
International Journal of Medical Informatics
1 публикация, 5.56%
Sensors
1 публикация, 5.56%
Drug Development and Industrial Pharmacy
1 публикация, 5.56%
IEEE Transactions on Control Systems Technology
1 публикация, 5.56%
Biosensors and Bioelectronics: X
1 публикация, 5.56%
Smart Health
1 публикация, 5.56%
Diabetology
1 публикация, 5.56%
Biosensors
1 публикация, 5.56%
1

Издатели

1
2
3
4
5
6
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 33.33%
MDPI
5 публикаций, 27.78%
Elsevier
3 публикации, 16.67%
Cold Spring Harbor Laboratory
1 публикация, 5.56%
Springer Nature
1 публикация, 5.56%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 5.56%
Taylor & Francis
1 публикация, 5.56%
1
2
3
4
5
6
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
18
Поделиться
Цитировать
ГОСТ |
Цитировать
Ahmed B. M. et al. Recent trends and techniques of blood glucose level prediction for diabetes control // Smart Health. 2024. Vol. 32. p. 100457.
ГОСТ со всеми авторами (до 50) Скопировать
Ahmed B. M., Ali M. E., Masud M. M., Naznin M. Recent trends and techniques of blood glucose level prediction for diabetes control // Smart Health. 2024. Vol. 32. p. 100457.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.smhl.2024.100457
UR - https://linkinghub.elsevier.com/retrieve/pii/S2352648324000126
TI - Recent trends and techniques of blood glucose level prediction for diabetes control
T2 - Smart Health
AU - Ahmed, Benzir Md
AU - Ali, Mohammed Eunus
AU - Masud, Mohammad Mehedy
AU - Naznin, Mahmuda
PY - 2024
DA - 2024/06/01
PB - Elsevier
SP - 100457
VL - 32
SN - 2352-6483
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Ahmed,
author = {Benzir Md Ahmed and Mohammed Eunus Ali and Mohammad Mehedy Masud and Mahmuda Naznin},
title = {Recent trends and techniques of blood glucose level prediction for diabetes control},
journal = {Smart Health},
year = {2024},
volume = {32},
publisher = {Elsevier},
month = {jun},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2352648324000126},
pages = {100457},
doi = {10.1016/j.smhl.2024.100457}
}