Journal of Fluid Mechanics, volume 606, pages 433-443

On steady linear diffusion-driven flow

M. A. Page
E. R. Johnson
Publication typeJournal Article
Publication date2008-07-10
scimago Q1
SJR1.565
CiteScore6.5
Impact factor3.6
ISSN00221120, 14697645
Condensed Matter Physics
Mechanical Engineering
Mechanics of Materials
Abstract

Wunsch (1970) and Phillips (1970) (Deep-Sea Res. vol. 17, pp. 293, 435) showed that a temperature flux condition on a sloping non-slip surface in a stratified fluid can generate a slow steady upward flow along a thin ‘buoyancy layer’. Their analysis is extended here to the more-general case of steady flow in a contained fluid where buoyancy layers may expel or entrain fluid from their outer edge. A compatibility condition that relates the mass flux and temperature gradient along that edge is derived, and this allows the fluid recirculation and temperature perturbation to be determined in the broader-scale ‘outer flow’ region. The analysis applies when the Wunsch–Phillips parameter R is small, in the linear case for which the density variations are dominated by a constant vertical gradient.

Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?