Steady nonlinear diffusion-driven flow
An imposed normal temperature gradient on a sloping surface in a viscous stratified fluid can generate a slow steady flow along a thin ‘buoyancy layer’ against that surface, and in a contained fluid the associated mass flux leads to a broader-scale ‘outer flow’. Previous analysis for small values of the Wunsch–Phillips parameter R is extended to the nonlinear case in a contained fluid, when the imposed temperature gradient is comparable with the background temperature gradient. As for the linear case, a compatibility condition relates the buoyancy-layer mass flux along each sloping boundary to the outer-flow temperature gradient. This condition allows the leading-order flow to be determined throughout the container for a variety of configurations.