volume 39 issue 7 pages 3690-3702

Predictive Modeling of Liquid Density and Surface Tension for Sustainable Aviation Fuels Using Nuclear Magnetic Resonance Atom Types

Robert Parker 1
Mark Kelly 1
Tiarnán Watson-Murphy 1
Mohammad Reza Ghaani 1
M. R. Ghaani 1
Stephen Dooley 1
Publication typeJournal Article
Publication date2025-02-10
scimago Q1
wos Q1
SJR1.124
CiteScore9.5
Impact factor5.3
ISSN08870624, 15205029
Abstract
Prescreening of sustainable aviation fuels (SAFs) is crucial for early stage development and ASTM D4054 evaluation. This study develops models to predict two key properties: temperature-dependent liquid density and surface tension of complex hydrocarbon mixtures. 1H 13C heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy is used to determine atom type compositions. Multiple linear regression models, trained on 1241 liquid density and 1260 surface tension experimental data points, identified seven key atom types and a temperature-dependent term as predictors. Applied to fossil-derived and synthetic fuels, density predictions had an error range of 0.00–5.35%, and surface tension predictions ranged from 0.29–4.41%. The prescreening method proved to be effective for predicting critical fuel properties in early stage SAF development.
Found 
Found 

Top-30

Journals

1
Applications in Energy and Combustion Science
1 publication, 100%
1

Publishers

1
Elsevier
1 publication, 100%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
1
Share
Cite this
GOST |
Cite this
GOST Copy
Parker R. et al. Predictive Modeling of Liquid Density and Surface Tension for Sustainable Aviation Fuels Using Nuclear Magnetic Resonance Atom Types // Energy & Fuels. 2025. Vol. 39. No. 7. pp. 3690-3702.
GOST all authors (up to 50) Copy
Parker R., Kelly M., Watson-Murphy T., Ghaani M. R., Ghaani M. R., Dooley S. Predictive Modeling of Liquid Density and Surface Tension for Sustainable Aviation Fuels Using Nuclear Magnetic Resonance Atom Types // Energy & Fuels. 2025. Vol. 39. No. 7. pp. 3690-3702.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.energyfuels.4c05601
UR - https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05601
TI - Predictive Modeling of Liquid Density and Surface Tension for Sustainable Aviation Fuels Using Nuclear Magnetic Resonance Atom Types
T2 - Energy & Fuels
AU - Parker, Robert
AU - Kelly, Mark
AU - Watson-Murphy, Tiarnán
AU - Ghaani, Mohammad Reza
AU - Ghaani, M. R.
AU - Dooley, Stephen
PY - 2025
DA - 2025/02/10
PB - American Chemical Society (ACS)
SP - 3690-3702
IS - 7
VL - 39
SN - 0887-0624
SN - 1520-5029
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Parker,
author = {Robert Parker and Mark Kelly and Tiarnán Watson-Murphy and Mohammad Reza Ghaani and M. R. Ghaani and Stephen Dooley},
title = {Predictive Modeling of Liquid Density and Surface Tension for Sustainable Aviation Fuels Using Nuclear Magnetic Resonance Atom Types},
journal = {Energy & Fuels},
year = {2025},
volume = {39},
publisher = {American Chemical Society (ACS)},
month = {feb},
url = {https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05601},
number = {7},
pages = {3690--3702},
doi = {10.1021/acs.energyfuels.4c05601}
}
MLA
Cite this
MLA Copy
Parker, Robert, et al. “Predictive Modeling of Liquid Density and Surface Tension for Sustainable Aviation Fuels Using Nuclear Magnetic Resonance Atom Types.” Energy & Fuels, vol. 39, no. 7, Feb. 2025, pp. 3690-3702. https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05601.