Journal of Physical Chemistry Letters, volume 13, issue 44, pages 10350-10355

Multiband Superconductors: Two Characteristic Lengths for Each Contributing Condensate

Publication typeJournal Article
Publication date2022-10-31
scimago Q1
wos Q1
SJR1.586
CiteScore9.6
Impact factor4.8
ISSN19487185
Physical and Theoretical Chemistry
General Materials Science
Abstract
The interference of multiple condensates coexisting in one system may lead to unconventional coherent behavior. This is expected when the spatial lengths of the condensates are essentially different. Traditionally, the characteristic spatial length of a superconducting condensate is associated with the gap function. However, the broader readership is more familiar with the concept of the Cooper-pair wave function. For conventional single-band superconductors, the gap function coincides with the center-of-mass Cooper-pair wave function up to the coupling constant, and the corresponding gap and wave function characteristic lengths are the same. Surprisingly, we find that in two-band superconductors, these lengths are the same only near the critical temperature. At lower temperatures, they can significantly deviate from each other, and the fundamental question of which of these lengths should be preferred when specifying the spatial scale of a band-dependent condensate in multiband superconducting materials arises.
Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?