ACS Macro Letters, volume 10, issue 10, pages 1191-1195

Diffusion of Short Semiflexible DNA Polymer Chains in Strong and Moderate Confinement

Publication typeJournal Article
Publication date2021-09-17
scimago Q1
SJR1.491
CiteScore10.4
Impact factor5.1
ISSN21611653
Materials Chemistry
Organic Chemistry
Inorganic Chemistry
Polymers and Plastics
Abstract
In many technological applications, DNA is confined within nanoenvironments that are smaller than the size of the unconfined polymer in solution. However, the dependence of the diffusion coefficient on molecular weight and characteristic confinement dimension remains poorly understood in this regime. Here, convex lens-induced confinement (CLiC) was leveraged to examine how the diffusion of short DNA fragments varied as a function of slit height by using single-molecule fluorescence tracking microscopy. The diffusion coefficient followed approximate power law behavior versus confinement height, with exponents of 0.27 ± 0.01, 0.32 ± 0.02, and 0.42 ± 0.06 for 692, 1343, and 2686 base pair chains, respectively. The weak dependence on slit height suggests that shorter semiflexible chains may adopt increasingly rodlike conformations and therefore experience weaker excluded-volume interactions as the confinement dimension is reduced. The diffusion coefficient versus molecular weight also exhibited apparent power law behavior, with exponents that varied slightly (from -0.89 to -0.85) with slit height, consistent with hydrodynamic interactions intermediate between Rouse and Zimm model predictions.
Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?