ACS Nano, volume 11, issue 8, pages 8456-8463

Low Variability in Synthetic Monolayer MoS2 Devices

Publication typeJournal Article
Publication date2017-07-25
Journal: ACS Nano
scimago Q1
SJR4.593
CiteScore26.0
Impact factor15.8
ISSN19360851, 1936086X
General Physics and Astronomy
General Materials Science
General Engineering
Abstract
Despite much interest in applications of two-dimensional (2D) fabrics such as MoS2, to date most studies have focused on single or few devices. Here we examine the variability of hundreds of transistors from monolayer MoS2 synthesized by chemical vapor deposition. Ultraclean fabrication yields low surface roughness of ∼3 Å and surprisingly low variability of key device parameters, considering the atomically thin nature of the material. Threshold voltage variation and very low hysteresis suggest variations in charge density and traps as low as ∼1011 cm-2. Three extraction methods (field-effect, Y-function, and effective mobility) independently reveal mobility from 30 to 45 cm2/V/s (10th to 90th percentile; highest value ∼48 cm2/V/s) across areas >1 cm2. Electrical properties are remarkably immune to the presence of bilayer regions, which cause only small conduction band offsets (∼55 meV) measured by scanning Kelvin probe microscopy, an order of magnitude lower than energy variations in Si films of comparable thickness. Data are also used as inputs to Monte Carlo circuit simulations to understand the effects of material variability on circuit variation. These advances address key missing steps required to scale 2D semiconductors into functional systems.
Found 

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

5
10
15
20
25
30
35
40
45
5
10
15
20
25
30
35
40
45
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?