Open Access
Deciphering Steroidal and Aporphine Alkaloids as Antileukemic Agents by Approaches of Molecular Networking and Metabolomics
Suni Liu
1, 2, 3, 4
,
Katyuce Souza Farias
1, 2, 3, 4
,
Katyuce de Souza Farias
3, 4
,
Vanessa Samudio Santos Zanuncio
1, 2, 3, 4
,
Vanessa Samúdio Dos Santos
3, 4
,
Geraldo Alves Damasceno Júnior
2, 4, 5, 6
,
FLÁVIO MACEDO ALVES
4, 6
,
Edgar J. Paredes-Gamero
2, 4, 7, 8
,
Edgar Julian Paredes-Gamero
4, 8
,
Kamylla Fernanda Souza de Souza
2, 4, 7, 8, 9, 10, 11, 12
,
Kamylla F S De Souza
4, 8, 11, 12
,
Lucas Roberto Pessatto
4, 8
,
Heron Fernandes Vieira Torquato
2, 4, 7, 8
,
Carlos Alexandre Carollo
1, 2, 3, 4
,
Denise Brentan Silva
1, 2, 3, 4
1
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Laboratory of Natural Products and Mass Spectrometry (LaPNEM)
3
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Campo Grande, Brazil
|
5
Laboratory of Botany, Institute of Biosciences (INBIO)
6
Laboratory of Botany, Institute of Biosciences (INBIO), Campo Grande, Brazil
|
7
Laboratory of Molecular Biology and Cell Cultures, Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN)
8
Laboratory of Molecular Biology and Cell Cultures, Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Campo Grande, Brazil
|
9
Biochemistry Department
11
Biochemistry Department, São Paulo, Brazil
|
Тип публикации: Journal Article
Дата публикации: 2025-03-06
scimago Q1
wos Q2
БС1
SJR: 0.773
CiteScore: 7.1
Impact factor: 4.3
ISSN: 24701343
Краткое описание
The chemodiversity of plants is a valuable resource for drug discovery, and its combination with modern approaches can reduce the time consumption for bioactive metabolite discovery. This study aimed to evaluate the chemical constituents from 18 plant species of different families against leukemia cancer cells and the application of statistical analysis from metabolomic data and molecular networking for the prediction of bioactive metabolites. The samples, extracted by an accelerated solvent extractor using ethanol and water 7:3 (v/v), were analyzed by LC-DAD-MS and evaluated against leukemia cancer cells (Kasumi-1, KG-1, and K-562). Chemical data were aligned, analyzed by statistics, and applied to create the molecular network. Sesbania virgata, Aeschynomene denticulata, Erythroxylum angiufugum, Psidium guineense, Astronium fraxinifolium, Coccoloba ochreolata, Solanum glaucophyllum (S. glaucophyllum), and Paullinia pinnata inhibited K-562 leukemia cancer cell viability by approximately 70% at 100 μg/mL, while Ocotea diospyrifolia showed 35% inhibition for the KG-1 lineage. Alkaloid fractions from S. glaucophyllum and O. diospyrifolia revealed EC50 values ranging from 13.9 to 6.4 μg/mL for K-562 and KG-1 cell lines, effectively inducing cell death with apoptotic characteristics, membrane integrity loss, and signs of late apoptosis. The molecular networking was essential and crucial to complement the statistical analysis, which was performed from 430 features and targeted steroidal and aporphine alkaloids. Boldine revealed EC50 values of 46, 116, and 145 μM for Kasumi, KG-1, and K-562 cancer cell lines, respectively. The findings marked the relevance of a broader chemical data analysis to predict bioactive compounds, emphasizing potential benefits in the search for metabolites against leukemia cancer cells, particularly steroidal and aporphine alkaloids.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Всего цитирований:
0
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Liu S. et al. Deciphering Steroidal and Aporphine Alkaloids as Antileukemic Agents by Approaches of Molecular Networking and Metabolomics // ACS Omega. 2025. Vol. 10. No. 10. pp. 10327-10339.
ГОСТ со всеми авторами (до 50)
Скопировать
Liu S. et al. Deciphering Steroidal and Aporphine Alkaloids as Antileukemic Agents by Approaches of Molecular Networking and Metabolomics // ACS Omega. 2025. Vol. 10. No. 10. pp. 10327-10339.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1021/acsomega.4c10160
UR - https://pubs.acs.org/doi/10.1021/acsomega.4c10160
TI - Deciphering Steroidal and Aporphine Alkaloids as Antileukemic Agents by Approaches of Molecular Networking and Metabolomics
T2 - ACS Omega
AU - Liu, Suni
AU - Farias, Katyuce Souza
AU - Farias, Katyuce de Souza
AU - Zanuncio, Vanessa Samudio Santos
AU - Samúdio Dos Santos, Vanessa
AU - Damasceno Júnior, Geraldo Alves
AU - ALVES, FLÁVIO MACEDO
AU - Paredes-Gamero, Edgar J.
AU - Paredes-Gamero, Edgar Julian
AU - de Souza, Kamylla Fernanda Souza
AU - De Souza, Kamylla F S
AU - Pessatto, Lucas Roberto
AU - Torquato, Heron Fernandes Vieira
AU - Carollo, Carlos Alexandre
AU - Silva, Denise Brentan
PY - 2025
DA - 2025/03/06
PB - American Chemical Society (ACS)
SP - 10327-10339
IS - 10
VL - 10
SN - 2470-1343
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Liu,
author = {Suni Liu and Katyuce Souza Farias and Katyuce de Souza Farias and Vanessa Samudio Santos Zanuncio and Vanessa Samúdio Dos Santos and Geraldo Alves Damasceno Júnior and FLÁVIO MACEDO ALVES and Edgar J. Paredes-Gamero and Edgar Julian Paredes-Gamero and Kamylla Fernanda Souza de Souza and Kamylla F S De Souza and Lucas Roberto Pessatto and Heron Fernandes Vieira Torquato and Carlos Alexandre Carollo and Denise Brentan Silva and others},
title = {Deciphering Steroidal and Aporphine Alkaloids as Antileukemic Agents by Approaches of Molecular Networking and Metabolomics},
journal = {ACS Omega},
year = {2025},
volume = {10},
publisher = {American Chemical Society (ACS)},
month = {mar},
url = {https://pubs.acs.org/doi/10.1021/acsomega.4c10160},
number = {10},
pages = {10327--10339},
doi = {10.1021/acsomega.4c10160}
}
Цитировать
MLA
Скопировать
Liu, Suni, et al. “Deciphering Steroidal and Aporphine Alkaloids as Antileukemic Agents by Approaches of Molecular Networking and Metabolomics.” ACS Omega, vol. 10, no. 10, Mar. 2025, pp. 10327-10339. https://pubs.acs.org/doi/10.1021/acsomega.4c10160.
Профили