Open Access
Open access
том 4 издание 1 страницы 1434-1442

First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts

Тип публикацииJournal Article
Дата публикации2019-01-16
scimago Q1
wos Q2
БС1
SJR0.773
CiteScore7.1
Impact factor4.3
ISSN24701343
General Chemistry
General Chemical Engineering
Краткое описание
One-dimensional tungsten disulfide (WS2) single-walled nanotubes (NTs) with either achiral, i.e., armchair (n, n) and zigzag-type (n, 0), or chiral (2n, n) configuration with diameters dNT > 1.9 nm have been found to be suitable for photocatalytic applications, since their band gaps correspond to the frequency range of visible light between red and violet (1.5 eV < Δεgap < 2.6 eV). We have simulated the electronic structure of nanotubes with diameters up to 12.0 nm. The calculated top of the valence band and the bottom of the conduction band (εVB and εCB, respectively) have been properly aligned relatively to the oxidation (εO2/H2O) and reduction (εH2/H2O) potentials of water. Very narrow nanotubes (0.5 < dNT < 1.9 nm) are unsuitable for water splitting because the condition εVB < εO2/H2O < εH2/H2O < εCB does not hold. For nanotubes with dNT > 1.9 nm, the condition εVB < εO2/H2O < εH2/H2O < εCB is fulfilled. The values of εVB and εCB have been found to depend only on the diameter and not on the chirality index of the nanotube. The reported structural and electronic properties have been obtained from either hybrid density functional theory and Hartree–Fock linear combination of atomic orbitals calculations (using the HSE06 functional) or the linear augmented cylindrical waves density functional theory method. In addition to single-walled NTs, we have investigated a number of achiral double-walled (m, m)@(n, n) and (m, 0)@(n, 0) as well as triple-walled (l, l)@(m, m)@(n, n) and (l, 0)@(m, 0)@(n, 0) nanotubes. All multiwalled nanotubes show a common dependence of their band gap on the diameter of the inner nanotube, independent of chirality index and number of walls. This behavior of WS2 NTs allows the exploitation of the entire range of the visible spectrum by suitably tuning the band gap.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Russian Journal of Inorganic Chemistry
2 публикации, 5.71%
International Journal of Hydrogen Energy
2 публикации, 5.71%
Applied Physics Reviews
1 публикация, 2.86%
ACS Omega
1 публикация, 2.86%
Catalysts
1 публикация, 2.86%
Journal of Electronic Materials
1 публикация, 2.86%
Materials Science and Engineering B: Solid-State Materials for Advanced Technology
1 публикация, 2.86%
Chemical Engineering Journal
1 публикация, 2.86%
IOP Conference Series: Materials Science and Engineering
1 публикация, 2.86%
Thin Solid Films
1 публикация, 2.86%
Applied Surface Science
1 публикация, 2.86%
Small Methods
1 публикация, 2.86%
ACS Energy Letters
1 публикация, 2.86%
ACS Applied Nano Materials
1 публикация, 2.86%
Journal of Materials Chemistry C
1 публикация, 2.86%
NanoScience and Technology
1 публикация, 2.86%
Computational and Theoretical Chemistry
1 публикация, 2.86%
Nanomaterials
1 публикация, 2.86%
Scientific Reports
1 публикация, 2.86%
Nano Letters
1 публикация, 2.86%
ACS Physical Chemistry Au
1 публикация, 2.86%
Physical Chemistry Chemical Physics
1 публикация, 2.86%
ACS Applied Polymer Materials
1 публикация, 2.86%
Physics Letters, Section A: General, Atomic and Solid State Physics
1 публикация, 2.86%
Small
1 публикация, 2.86%
Journal of Physical Chemistry C
1 публикация, 2.86%
Журнал неорганической химии
1 публикация, 2.86%
Next Energy
1 публикация, 2.86%
ACS Catalysis
1 публикация, 2.86%
1
2

Издатели

1
2
3
4
5
6
7
8
9
Elsevier
9 публикаций, 25.71%
American Chemical Society (ACS)
8 публикаций, 22.86%
Springer Nature
4 публикации, 11.43%
Pleiades Publishing
3 публикации, 8.57%
Royal Society of Chemistry (RSC)
3 публикации, 8.57%
MDPI
2 публикации, 5.71%
IOP Publishing
2 публикации, 5.71%
Wiley
2 публикации, 5.71%
AIP Publishing
1 публикация, 2.86%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
35
Поделиться
Цитировать
ГОСТ |
Цитировать
Piskunov S. et al. First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts // ACS Omega. 2019. Vol. 4. No. 1. pp. 1434-1442.
ГОСТ со всеми авторами (до 50) Скопировать
Piskunov S., Lisovski O., Zhukovskii Y. F., D'yachkov P., Evarestov R., Kenmoe S., Spohr E. First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts // ACS Omega. 2019. Vol. 4. No. 1. pp. 1434-1442.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acsomega.8b03121
UR - https://doi.org/10.1021/acsomega.8b03121
TI - First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts
T2 - ACS Omega
AU - Piskunov, S.
AU - Lisovski, O
AU - Zhukovskii, Yuri F.
AU - D'yachkov, P.N
AU - Evarestov, Robert
AU - Kenmoe, S
AU - Spohr, Eckhard
PY - 2019
DA - 2019/01/16
PB - American Chemical Society (ACS)
SP - 1434-1442
IS - 1
VL - 4
PMID - 31459410
SN - 2470-1343
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Piskunov,
author = {S. Piskunov and O Lisovski and Yuri F. Zhukovskii and P.N D'yachkov and Robert Evarestov and S Kenmoe and Eckhard Spohr},
title = {First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts},
journal = {ACS Omega},
year = {2019},
volume = {4},
publisher = {American Chemical Society (ACS)},
month = {jan},
url = {https://doi.org/10.1021/acsomega.8b03121},
number = {1},
pages = {1434--1442},
doi = {10.1021/acsomega.8b03121}
}
MLA
Цитировать
Piskunov, S., et al. “First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts.” ACS Omega, vol. 4, no. 1, Jan. 2019, pp. 1434-1442. https://doi.org/10.1021/acsomega.8b03121.