Journal of Organic Chemistry, volume 70, issue 21, pages 8338-8343
Important Role of the 3-Mercaptopropionamide Moiety in Glutathione: Promoting Effect on Decomposition of the Adduct of Glutathione with the Oxoammonium Ion of TEMPO
Hatsuo Maeda
1
,
Hong-Yan Wu
1
,
Yuji Yamauchi
1
,
Hidenobu OHMORI
1
Publication type: Journal Article
Publication date: 2005-09-22
Journal:
Journal of Organic Chemistry
scimago Q2
SJR: 0.724
CiteScore: 6.2
Impact factor: 3.3
ISSN: 00223263, 15206904
PubMed ID:
16209576
Organic Chemistry
Abstract
Cyclic voltammetry of TEMPO in aqueous 0.1 M NaOH in the presence of glutathione (GSH) or cysteine (Cys) indicated the following points: (i) Both of the thiols rapidly formed adducts 3 with oxoammonium ion 1 anodically generated from TEMPO. (ii) 3 generated from GSH entered a succeeding reaction that generated N-oxide anion 2- (the reduced TEMPO). (iii) 3 produced from Cys remained intact over the time scale of voltammetry. A structural feature of GSH was considered to contribute to the observed behavior of this tripeptide. Possible structural features were evaluated by screening various thiols on the basis of whether they provided GSH-like voltammetric results. The 3-mercaptopropionamide group with an amide hydrogen in GSH was determined to be responsible for the observed difference between GSH and Cys. The likely function is to transform 3 from GSH into a 5-imino-1,2-oxathiolane intermediate, thereby releasing 2-. Product analysis for reactions of model thiols representing GSH and Cys with 1 provided support for this argument and suggested that the reaction of GSH or Cys with 1 would produce the corresponding disulfides, regardless of whether a five-membered ring intermediate was formed. The proposed function of the 3-mercaptopropionamide moiety of GSH may provide useful insight for the molecular design of exogenous thiol compounds as novel drugs for the treatment of GSH-depletion-related disorders.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.