volume 122 issue 38 pages 8998-9006

Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential

Publication typeJournal Article
Publication date2018-09-01
scimago Q1
wos Q3
SJR0.742
CiteScore5.3
Impact factor2.9
ISSN15206106, 15205207, 10895647
Materials Chemistry
Surfaces, Coatings and Films
Physical and Theoretical Chemistry
Abstract
The phase-change material, Ge2Sb2Te5, is the canonical material ingredient for next-generation storage-class memory devices used in novel computing architectures, but fundamental questions remain regarding its atomic structure and physicochemical properties. Here, we introduce a machine-learning (ML)-based interatomic potential that enables large-scale atomistic simulations of liquid, amorphous, and crystalline Ge2Sb2Te5 with an unprecedented combination of speed and density functional theory (DFT) level of accuracy. Two applications exemplify the usefulness of such an ML-driven approach: we generate a 7200-atom structural model, hitherto inaccessible with DFT simulations, that affords new insight into the medium-range structural order and we create an ensemble of uncorrelated, smaller structures, for studies of their chemical bonding with statistical significance. Our work opens the way for new atomistic insights into the fascinating and chemically complex class of phase-change materials that are used in real nonvolatile memory devices.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
Journal of Chemical Physics
11 publications, 8.03%
npj Computational Materials
9 publications, 6.57%
Acta Materialia
8 publications, 5.84%
Physica Status Solidi - Rapid Research Letters
7 publications, 5.11%
Physical Review B
6 publications, 4.38%
Journal of Chemical Theory and Computation
4 publications, 2.92%
Journal of Physical Chemistry C
4 publications, 2.92%
Physical Review Materials
4 publications, 2.92%
Journal Physics D: Applied Physics
3 publications, 2.19%
Advanced Materials
3 publications, 2.19%
Advanced Functional Materials
3 publications, 2.19%
Journal of Materials Chemistry C
3 publications, 2.19%
Journal of the American Ceramic Society
3 publications, 2.19%
Nature Reviews Materials
2 publications, 1.46%
Nature Communications
2 publications, 1.46%
Computational Materials Science
2 publications, 1.46%
Materials Today
2 publications, 1.46%
Chemical Reviews
2 publications, 1.46%
Advanced Energy Materials
2 publications, 1.46%
Nanoscale
2 publications, 1.46%
Journal of Physical Chemistry A
1 publication, 0.73%
Applied Physics Letters
1 publication, 0.73%
Physical Review Letters
1 publication, 0.73%
International Journal of Nanoscience
1 publication, 0.73%
Journal of the Physical Society of Japan
1 publication, 0.73%
Nanomaterials
1 publication, 0.73%
Frontiers in Materials
1 publication, 0.73%
Nature Materials
1 publication, 0.73%
Journal of Materials Science
1 publication, 0.73%
2
4
6
8
10
12

Publishers

5
10
15
20
25
30
Wiley
26 publications, 18.98%
Elsevier
25 publications, 18.25%
American Chemical Society (ACS)
17 publications, 12.41%
Springer Nature
16 publications, 11.68%
AIP Publishing
12 publications, 8.76%
American Physical Society (APS)
11 publications, 8.03%
Royal Society of Chemistry (RSC)
10 publications, 7.3%
IOP Publishing
7 publications, 5.11%
MDPI
3 publications, 2.19%
World Scientific
1 publication, 0.73%
Physical Society of Japan
1 publication, 0.73%
Frontiers Media S.A.
1 publication, 0.73%
Japan Society of Applied Physics
1 publication, 0.73%
Institute of Electrical and Electronics Engineers (IEEE)
1 publication, 0.73%
The Royal Society
1 publication, 0.73%
Cellule MathDoc/Centre Mersenne
1 publication, 0.73%
American Association for the Advancement of Science (AAAS)
1 publication, 0.73%
OAE Publishing Inc.
1 publication, 0.73%
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
137
Share
Cite this
GOST |
Cite this
GOST Copy
Mocanu F. C. et al. Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential // Journal of Physical Chemistry B. 2018. Vol. 122. No. 38. pp. 8998-9006.
GOST all authors (up to 50) Copy
Mocanu F. C., Konstantinou K., Lee T. H., Bernstein N., Deringer V. L., Csányi G., Elliott S. Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential // Journal of Physical Chemistry B. 2018. Vol. 122. No. 38. pp. 8998-9006.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jpcb.8b06476
UR - https://doi.org/10.1021/acs.jpcb.8b06476
TI - Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential
T2 - Journal of Physical Chemistry B
AU - Mocanu, Felix C.
AU - Konstantinou, Konstantinos
AU - Lee, Tae Hoon
AU - Bernstein, N.
AU - Deringer, Volker L.
AU - Csányi, G.
AU - Elliott, S.R
PY - 2018
DA - 2018/09/01
PB - American Chemical Society (ACS)
SP - 8998-9006
IS - 38
VL - 122
PMID - 30173522
SN - 1520-6106
SN - 1520-5207
SN - 1089-5647
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2018_Mocanu,
author = {Felix C. Mocanu and Konstantinos Konstantinou and Tae Hoon Lee and N. Bernstein and Volker L. Deringer and G. Csányi and S.R Elliott},
title = {Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential},
journal = {Journal of Physical Chemistry B},
year = {2018},
volume = {122},
publisher = {American Chemical Society (ACS)},
month = {sep},
url = {https://doi.org/10.1021/acs.jpcb.8b06476},
number = {38},
pages = {8998--9006},
doi = {10.1021/acs.jpcb.8b06476}
}
MLA
Cite this
MLA Copy
Mocanu, Felix C., et al. “Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential.” Journal of Physical Chemistry B, vol. 122, no. 38, Sep. 2018, pp. 8998-9006. https://doi.org/10.1021/acs.jpcb.8b06476.