volume 9 issue 11 pages 2879-2885

Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics

Publication typeJournal Article
Publication date2018-05-12
scimago Q1
wos Q1
SJR1.394
CiteScore8.7
Impact factor4.6
ISSN19487185
Physical and Theoretical Chemistry
General Materials Science
Abstract
Amorphous silicon ( a-Si) is a widely studied noncrystalline material, and yet the subtle details of its atomistic structure are still unclear. Here, we show that accurate structural models of a-Si can be obtained using a machine-learning-based interatomic potential. Our best a-Si network is obtained by simulated cooling from the melt at a rate of 1011 K/s (that is, on the 10 ns time scale), contains less than 2% defects, and agrees with experiments regarding excess energies, diffraction data, and 29Si NMR chemical shifts. We show that this level of quality is impossible to achieve with faster quench simulations. We then generate a 4096-atom system that correctly reproduces the magnitude of the first sharp diffraction peak (FSDP) in the structure factor, achieving the closest agreement with experiments to date. Our study demonstrates the broader impact of machine-learning potentials for elucidating structures and properties of technologically important amorphous materials.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
18
20
Journal of Chemical Physics
19 publications, 8.56%
Physical Review Materials
16 publications, 7.21%
Physical Review B
11 publications, 4.95%
Journal of Chemical Theory and Computation
11 publications, 4.95%
Nature Communications
10 publications, 4.5%
Computational Materials Science
7 publications, 3.15%
npj Computational Materials
7 publications, 3.15%
Journal of Physical Chemistry C
5 publications, 2.25%
Physical Chemistry Chemical Physics
5 publications, 2.25%
Physical Review Letters
4 publications, 1.8%
Journal of Non-Crystalline Solids
4 publications, 1.8%
Angewandte Chemie
4 publications, 1.8%
Angewandte Chemie - International Edition
4 publications, 1.8%
MRS Advances
3 publications, 1.35%
Nature Reviews Materials
3 publications, 1.35%
Advanced Materials
3 publications, 1.35%
ACS Nano
3 publications, 1.35%
Chemical Reviews
3 publications, 1.35%
Chemical Science
3 publications, 1.35%
Faraday Discussions
3 publications, 1.35%
Journal of Physical Chemistry A
2 publications, 0.9%
Journal of Physical Chemistry B
2 publications, 0.9%
Journal of Applied Physics
2 publications, 0.9%
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2 publications, 0.9%
Nature Materials
2 publications, 0.9%
International Journal of Heat and Mass Transfer
2 publications, 0.9%
Scientific Reports
2 publications, 0.9%
Journal of Physics Materials
2 publications, 0.9%
Applied Surface Science
2 publications, 0.9%
2
4
6
8
10
12
14
16
18
20

Publishers

5
10
15
20
25
30
35
40
Springer Nature
39 publications, 17.57%
Elsevier
33 publications, 14.86%
American Physical Society (APS)
33 publications, 14.86%
American Chemical Society (ACS)
31 publications, 13.96%
AIP Publishing
22 publications, 9.91%
Wiley
21 publications, 9.46%
Royal Society of Chemistry (RSC)
16 publications, 7.21%
IOP Publishing
10 publications, 4.5%
MDPI
5 publications, 2.25%
The Royal Society
2 publications, 0.9%
Taylor & Francis
2 publications, 0.9%
ASME International
1 publication, 0.45%
Physical Society of Japan
1 publication, 0.45%
Oxford University Press
1 publication, 0.45%
Cold Spring Harbor Laboratory
1 publication, 0.45%
International Journal of Precision Engineering and Manufacturing-Smart Technology of Korean Society for Precision Engineering
1 publication, 0.45%
American Vacuum Society
1 publication, 0.45%
Pleiades Publishing
1 publication, 0.45%
Tsinghua University Press
1 publication, 0.45%
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
222
Share
Cite this
GOST |
Cite this
GOST Copy
Deringer V. L. et al. Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics // Journal of Physical Chemistry Letters. 2018. Vol. 9. No. 11. pp. 2879-2885.
GOST all authors (up to 50) Copy
Deringer V. L., Bernstein N., Bartók A. P., Cliffe M. J., Kerber R., Marbella L., Grey C. P., Elliott S., Csányi G. Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics // Journal of Physical Chemistry Letters. 2018. Vol. 9. No. 11. pp. 2879-2885.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jpclett.8b00902
UR - https://doi.org/10.1021/acs.jpclett.8b00902
TI - Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics
T2 - Journal of Physical Chemistry Letters
AU - Deringer, Volker L.
AU - Bernstein, N.
AU - Bartók, Albert P.
AU - Cliffe, Matthew J.
AU - Kerber, Rachel
AU - Marbella, Lauren
AU - Grey, C. P.
AU - Elliott, S.R
AU - Csányi, G.
PY - 2018
DA - 2018/05/12
PB - American Chemical Society (ACS)
SP - 2879-2885
IS - 11
VL - 9
PMID - 29754489
SN - 1948-7185
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2018_Deringer,
author = {Volker L. Deringer and N. Bernstein and Albert P. Bartók and Matthew J. Cliffe and Rachel Kerber and Lauren Marbella and C. P. Grey and S.R Elliott and G. Csányi},
title = {Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics},
journal = {Journal of Physical Chemistry Letters},
year = {2018},
volume = {9},
publisher = {American Chemical Society (ACS)},
month = {may},
url = {https://doi.org/10.1021/acs.jpclett.8b00902},
number = {11},
pages = {2879--2885},
doi = {10.1021/acs.jpclett.8b00902}
}
MLA
Cite this
MLA Copy
Deringer, Volker L., et al. “Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics.” Journal of Physical Chemistry Letters, vol. 9, no. 11, May. 2018, pp. 2879-2885. https://doi.org/10.1021/acs.jpclett.8b00902.