volume 10 issue 6 pages 1264-1271

Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(μ-H2)Si)

Publication typeJournal Article
Publication date2019-02-28
scimago Q1
wos Q1
SJR1.394
CiteScore8.7
Impact factor4.6
ISSN19487185
Physical and Theoretical Chemistry
General Materials Science
Abstract
The hitherto elusive dibridged germaniumsilylene molecule (Ge(μ-H2)Si) has been formed for the first time via the bimolecular gas-phase reaction of ground-state germanium atoms (Ge) with silane (SiH4) under single-collision conditions. Merged with state-of-the-art electronic structure calculations, the reaction was found to proceed through initial formation of a van der Waals complex in the entrance channel, insertion of the germanium into a silicon-hydrogen bond, intersystem crossing from the triplet to the singlet surface, hydrogen migrations, and eventually elimination of molecular hydrogen via a tight exit transition state, leading to the germaniumsilylene "butterfly". This investigation provides an extraordinary peek at the largely unknown silicon-germanium chemistry on the molecular level and sheds light on the essential nonadiabatic reaction dynamics of germanium and silicon, which are quite distinct from those of the isovalent carbon system, thus offering crucial insights that reveal exotic chemistry and intriguing chemical bonding in the germanium-silicon system on the most fundamental, microscopic level.
Found 
Found 

Top-30

Journals

1
2
Journal of Physical Chemistry Letters
2 publications, 25%
ChemPhysChem
2 publications, 25%
Journal of Physical Chemistry A
2 publications, 25%
Chemistry - A European Journal
1 publication, 12.5%
Physical Chemistry Chemical Physics
1 publication, 12.5%
1
2

Publishers

1
2
3
4
American Chemical Society (ACS)
4 publications, 50%
Wiley
3 publications, 37.5%
Royal Society of Chemistry (RSC)
1 publication, 12.5%
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
8
Share
Cite this
GOST |
Cite this
GOST Copy
Thomas A. C. et al. Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(μ-H2)Si) // Journal of Physical Chemistry Letters. 2019. Vol. 10. No. 6. pp. 1264-1271.
GOST all authors (up to 50) Copy
Thomas A. C., Dangi B. B., Yang T., Tarczay G., Kaiser R. I., Sun B., Chen S., Chang A. H. H., Nguyen T. L., Stanton J. F., Mebel A. M. Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(μ-H2)Si) // Journal of Physical Chemistry Letters. 2019. Vol. 10. No. 6. pp. 1264-1271.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jpclett.9b00284
UR - https://doi.org/10.1021/acs.jpclett.9b00284
TI - Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(μ-H2)Si)
T2 - Journal of Physical Chemistry Letters
AU - Thomas, Aaron C.
AU - Dangi, Beni B.
AU - Yang, Tao
AU - Tarczay, György
AU - Kaiser, Ralf I.
AU - Sun, Bingjian
AU - Chen, Si-Ying
AU - Chang, Agnes H. H.
AU - Nguyen, Thanh L
AU - Stanton, John F
AU - Mebel, A. M.
PY - 2019
DA - 2019/02/28
PB - American Chemical Society (ACS)
SP - 1264-1271
IS - 6
VL - 10
PMID - 30817157
SN - 1948-7185
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Thomas,
author = {Aaron C. Thomas and Beni B. Dangi and Tao Yang and György Tarczay and Ralf I. Kaiser and Bingjian Sun and Si-Ying Chen and Agnes H. H. Chang and Thanh L Nguyen and John F Stanton and A. M. Mebel},
title = {Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(μ-H2)Si)},
journal = {Journal of Physical Chemistry Letters},
year = {2019},
volume = {10},
publisher = {American Chemical Society (ACS)},
month = {feb},
url = {https://doi.org/10.1021/acs.jpclett.9b00284},
number = {6},
pages = {1264--1271},
doi = {10.1021/acs.jpclett.9b00284}
}
MLA
Cite this
MLA Copy
Thomas, Aaron C., et al. “Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(μ-H2)Si).” Journal of Physical Chemistry Letters, vol. 10, no. 6, Feb. 2019, pp. 1264-1271. https://doi.org/10.1021/acs.jpclett.9b00284.