volume 18 issue 4 pages 1477-1485

Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins

Johannes Griss 1, 2
Florian Stanek 3, 4
Otto Hudecz 3, 4
Gerhard Dürnberger 3, 4, 5
Publication typeJournal Article
Publication date2019-03-12
scimago Q1
wos Q2
SJR1.139
CiteScore7.3
Impact factor3.6
ISSN15353893, 15353907
General Chemistry
Biochemistry
Abstract
Label-free quantification has become a common-practice in many mass spectrometry-based proteomics experiments. In recent years, we and others have shown that spectral clustering can considerably improve the analysis of (primarily large-scale) proteomics data sets. Here we show that spectral clustering can be used to infer additional peptide-spectrum matches and improve the quality of label-free quantitative proteomics data in data sets also containing only tens of MS runs. We analyzed four well-known public benchmark data sets that represent different experimental settings using spectral counting and peak intensity based label-free quantification. In both approaches, the additionally inferred peptide-spectrum matches through our spectra-cluster algorithm improved the detectability of low abundant proteins while increasing the accuracy of the derived quantitative data, without increasing the data sets’ noise. Additionally, we developed a Proteome Discoverer node for our spectra-cluster algorithm which allows anyone to rebuild our proposed pipeline using the free version of Proteome Discoverer.
Found 
Found 

Top-30

Journals

1
2
3
4
Journal of Proteome Research
4 publications, 30.77%
Nature Communications
1 publication, 7.69%
Molecular and Cellular Proteomics
1 publication, 7.69%
EuPA Open Proteomics
1 publication, 7.69%
Journal not defined
1 publication, 7.69%
RSC Medicinal Chemistry
1 publication, 7.69%
Methods in Molecular Biology
1 publication, 7.69%
Cells
1 publication, 7.69%
1
2
3
4

Publishers

1
2
3
4
American Chemical Society (ACS)
4 publications, 30.77%
Springer Nature
2 publications, 15.38%
Cold Spring Harbor Laboratory
2 publications, 15.38%
American Society for Biochemistry and Molecular Biology
1 publication, 7.69%
Elsevier
1 publication, 7.69%
Wiley
1 publication, 7.69%
Royal Society of Chemistry (RSC)
1 publication, 7.69%
MDPI
1 publication, 7.69%
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
13
Share
Cite this
GOST |
Cite this
GOST Copy
Griss J. et al. Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins // Journal of Proteome Research. 2019. Vol. 18. No. 4. pp. 1477-1485.
GOST all authors (up to 50) Copy
Griss J., Stanek F., Hudecz O., Dürnberger G., Perez-Riverol Y., Vizcaíno J. A., Mechtler K. Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins // Journal of Proteome Research. 2019. Vol. 18. No. 4. pp. 1477-1485.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jproteome.8b00377
UR - https://doi.org/10.1021/acs.jproteome.8b00377
TI - Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins
T2 - Journal of Proteome Research
AU - Griss, Johannes
AU - Stanek, Florian
AU - Hudecz, Otto
AU - Dürnberger, Gerhard
AU - Perez-Riverol, Yasset
AU - Vizcaíno, Juan Antonio
AU - Mechtler, Karl
PY - 2019
DA - 2019/03/12
PB - American Chemical Society (ACS)
SP - 1477-1485
IS - 4
VL - 18
PMID - 30859831
SN - 1535-3893
SN - 1535-3907
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Griss,
author = {Johannes Griss and Florian Stanek and Otto Hudecz and Gerhard Dürnberger and Yasset Perez-Riverol and Juan Antonio Vizcaíno and Karl Mechtler},
title = {Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins},
journal = {Journal of Proteome Research},
year = {2019},
volume = {18},
publisher = {American Chemical Society (ACS)},
month = {mar},
url = {https://doi.org/10.1021/acs.jproteome.8b00377},
number = {4},
pages = {1477--1485},
doi = {10.1021/acs.jproteome.8b00377}
}
MLA
Cite this
MLA Copy
Griss, Johannes, et al. “Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins.” Journal of Proteome Research, vol. 18, no. 4, Mar. 2019, pp. 1477-1485. https://doi.org/10.1021/acs.jproteome.8b00377.