The Journal of Physical Chemistry, volume 94, issue 10, pages 4356-4363

Dynamics of electron-hole pair recombination in semiconductor clusters

M O'Neil
John A. Marohn
G Mclendon
Publication typeJournal Article
Publication date1990-05-01
SJR
CiteScore
Impact factor
ISSN00223654, 15415740
Physical and Theoretical Chemistry
General Engineering
Abstract
The kinetics of radiative electron-hole pair recombination in CdS and Cd{sub 3}As{sub 2} clusters (where the radius of the cluster is smaller than the de Broglie wavelength of photogenerated excitons) were studied with picosecond photon counting luminescence decay measurements over wide temperature and energy ranges. The decay profiles were quantitatively examined with several models. The decays are composed of two distinct time regimes, each with very different temperature and emission energy dependence. The first (fast) regime is attributed to an unusually efficient thermal repopulation mechanism. The second (slow) component is well described by a distributed kinetic model. The kinetic behavior of wide (CdS) and narrow (Cd{sub 3}As{sub 2}) band gap materials was remarkably similar when composed of clusters in the quantum confined regime.
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18

Publishers

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?