Journal of Physical Chemistry A, volume 115, issue 9, pages 1743-1753
Tautomerism and Thermal Decomposition of Tetrazole: High-Level ab Initio Study
Tamara V. Basova
1
Publication type: Journal Article
Publication date: 2011-03-10
Journal:
Journal of Physical Chemistry A
scimago Q2
SJR: 0.604
CiteScore: 5.2
Impact factor: 2.7
ISSN: 10895639, 15205215
PubMed ID:
21322546
Physical and Theoretical Chemistry
Abstract
The mutual interconversion and decomposition reactions of four tetrazole isomers (1H-TZ, 2H-TZ, 5H-TZ, and an N-heterocyclic carbene 14H) have been studied theoretically using the W1 high-level procedure. Computations allowed resolution of the existing discrepancies in the mechanism and key intermediates of TZ thermolysis. The tautomeric equilibria between 1H-TZ, 2H-TZ, and 14H turned out to play a very important role in the mechanism of thermal decomposition. Although the barriers of monomolecular tautomeric transformations were found to be high (∼50-70 kcal/mol), the concerted double H atom transfer reactions in the H-bonded complexes of TZ tautomers have profoundly lower barriers (∼18-28 kcal/mol). These reactions lead to fast interconversion between 1H-TZ, 2H-TZ, and 14H. The carbene 14H has never been considered before; however, it was predicted to be a key intermediate in the mechanism of thermal decomposition of TZ. For all species considered, the unimolecular reactions of N(2) elimination were predicted to dominate over the elimination of hydrazoic acid. In agreement with existing experimental data, the effective activation energy of thermolysis was calculated to be 36.2 kcal/mol.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.