Organometallics, volume 29, issue 1, pages 117-124
Latent Thermo-Switchable Olefin Metathesis Initiators Bearing a Pyridyl-Functionalized Chelating Carbene: Influence of the Leaving Group’s Rigidity on the Catalyst’s Performance
Anna Szadkowska
1
,
Xaver Gstrein
2
,
Daniel Burtscher
2
,
Katarzyna Natalia Jarzembska
3
,
Krzysztof Woźniak
3
,
Christian Slugovc
2
,
1
Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
|
Publication type: Journal Article
Publication date: 2009-12-14
Journal:
Organometallics
scimago Q1
wos Q2
SJR: 0.654
CiteScore: 5.6
Impact factor: 2.5
ISSN: 02767333, 15206041
Organic Chemistry
Inorganic Chemistry
Physical and Theoretical Chemistry
Abstract
The synthesis and characterization of two ruthenium complexes bearing chelating carbene ligands is described. Carbene precursors, 2-(2-vinylphenyl)pyridine and 10-vinylbenzo[h]quinoline, are applied to prepare (SPY-5-31)-dichloro-(κ2(C,N)-N-2-(2-vinylbenzylidene)pyridine(1,3-bis(2,4,6-trimethylphenyl)4,5-dihydroimidazol-2-ylidene)ruthenium (VIII) and (SPY-5-31)-dichloro-(κ2(C,N)-2-(benzo[h]quinolin-10-yl)methylidene)(1,3-bis(2,4,6-trimethylphenyl)4,5-dihydroimidazol-2-ylidene)ruthenium (IX). Both catalysts/initiators are used to perform ring-closing metathesis (RCM) and ring-opening metathesis polymerizations (ROMP). RCM experiments reveal significant thermal stability of the catalysts under forcing reaction conditions such as boiling toluene for 48 h. Even challenging substrates such as diethylallyl(2-methylallyl)malonate are completely transformed with low catalyst loadings (0.1 mol % at 110 °C). The high thermal stability, i.e., latency, might be explained by a slow generation of the catalytically acti...
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.