Open Access
Open access
том 2 издание 11 страницы 570-586

Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis

Xiran Cheng 1, 2, 3
Chenyu Wu 1, 2, 3, 4, 5, 6
Jiayan Xu 7, 8, 9
Yulan Han 1, 2, 3, 7, 8, 9
Wenbo Xie 1, 2, 3
P Hu 1, 2, 3, 7, 8, 9
Тип публикацииJournal Article
Дата публикации2024-09-11
scimago Q1
wos Q1
SJR1.646
CiteScore4.4
Impact factor6.2
ISSN27719316
Краткое описание
This Perspective explores the integration of machine learning potentials (MLPs) in the research of heterogeneous catalysis, focusing on their role in identifying in situ active sites and enhancing the understanding of catalytic processes. MLPs utilize extensive databases from high-throughput density functional theory (DFT) calculations to train models that predict atomic configurations, energies, and forces with near-DFT accuracy. These capabilities allow MLPs to handle significantly larger systems and extend simulation times beyond the limitations of traditional ab initio methods. Coupled with global optimization algorithms, MLPs enable systematic investigations across vast structural spaces, making substantial contributions to the modeling of catalyst surface structures under reactive conditions. The review aims to provide a broad introduction to recent advancements and practical guidance on employing MLPs and also showcases several exemplary cases of MLP-driven discoveries related to surface structure changes under reactive conditions and the nature of active sites in heterogeneous catalysis. The prevailing challenges faced by this approach are also discussed.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Precision Chemistry
2 публикации, 12.5%
Journal of Catalysis
2 публикации, 12.5%
Journal of Chemical Theory and Computation
1 публикация, 6.25%
ACS Catalysis
1 публикация, 6.25%
Chinese Science Bulletin (Chinese Version)
1 публикация, 6.25%
Chemical Society Reviews
1 публикация, 6.25%
Scientia Sinica Chimica
1 публикация, 6.25%
Surfaces and Interfaces
1 публикация, 6.25%
ACS Nano
1 публикация, 6.25%
Biophysical Reviews
1 публикация, 6.25%
Advanced Powder Materials
1 публикация, 6.25%
Russian Chemical Reviews
1 публикация, 6.25%
ACS applied materials & interfaces
1 публикация, 6.25%
Chemical Science
1 публикация, 6.25%
1
2

Издатели

1
2
3
4
5
6
American Chemical Society (ACS)
6 публикаций, 37.5%
Elsevier
4 публикации, 25%
Science in China Press
2 публикации, 12.5%
Royal Society of Chemistry (RSC)
2 публикации, 12.5%
Springer Nature
1 публикация, 6.25%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 6.25%
1
2
3
4
5
6
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
16
Поделиться
Цитировать
ГОСТ |
Цитировать
Cheng X. et al. Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis // Precision Chemistry. 2024. Vol. 2. No. 11. pp. 570-586.
ГОСТ со всеми авторами (до 50) Скопировать
Cheng X., Wu C., Xu J., Han Y., Xie W., Hu P. Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis // Precision Chemistry. 2024. Vol. 2. No. 11. pp. 570-586.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/prechem.4c00051
UR - https://pubs.acs.org/doi/10.1021/prechem.4c00051
TI - Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis
T2 - Precision Chemistry
AU - Cheng, Xiran
AU - Wu, Chenyu
AU - Xu, Jiayan
AU - Han, Yulan
AU - Xie, Wenbo
AU - Hu, P
PY - 2024
DA - 2024/09/11
PB - American Chemical Society (ACS)
SP - 570-586
IS - 11
VL - 2
PMID - 39611023
SN - 2771-9316
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Cheng,
author = {Xiran Cheng and Chenyu Wu and Jiayan Xu and Yulan Han and Wenbo Xie and P Hu},
title = {Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis},
journal = {Precision Chemistry},
year = {2024},
volume = {2},
publisher = {American Chemical Society (ACS)},
month = {sep},
url = {https://pubs.acs.org/doi/10.1021/prechem.4c00051},
number = {11},
pages = {570--586},
doi = {10.1021/prechem.4c00051}
}
MLA
Цитировать
Cheng, Xiran, et al. “Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis.” Precision Chemistry, vol. 2, no. 11, Sep. 2024, pp. 570-586. https://pubs.acs.org/doi/10.1021/prechem.4c00051.
Профили